Introduction

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 03 — Greedy Algorithms (Chapter 16)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Greedy methods: A technique for solving optimization problems Choose a solution to a problem that is best per an objective function

- Similar to dynamic programming in that we examine subproblems, exploiting optimal substructure property
- Key difference: In dynamic programming we considered all possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- Examples: Minimum spanning tree, single-source shortest paths

sscott@cse.unl.edu

Activity Selection (1)

- Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room in terms of number of classes scheduled
- > This is an example of the activity selection problem:
 - Given: Set $S = \{a_1, a_2, \dots, a_n\}$ of *n* proposed activities that wish to use a resource that can serve only one activity at a time
 - a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$
 - If a_i is scheduled to use the resource, it occupies it during the interval [s_i, f_i) ⇒ can schedule both a_i and a_j iff s_i ≥ f_j or s_j ≥ f_i (if this happens, then we say that a_i and a_j are compatible)
 - \blacktriangleright Goal is to find a largest subset $S'\subseteq S$ such that all activities in S' are pairwise compatible
 - Assume that activities are sorted by finish time:

 $f_1 \leq f_2 \leq \cdots \leq f_n$

Activity Selection (2)

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	11 12 16

Sets of mutually compatible activities: {a₃, a₉, a₁₁}, {a₁, a₄, a₈, a₁₁}, {a₂, a₄, a₉, a₁₁}

Optimal Substructure of Activity Selection

- ► Let *S_{ij}* be set of activities that start after *a_i* finishes and that finish before *a_j* starts
- Let $A_{ij} \subseteq S_{ij}$ be a largest set of activities that are mutually compatible
- If activity $a_k \in A_{ij}$, then we get two subproblems: S_{ik} (subset starting after a_i finishes and finishing before a_k starts) and S_{kj}
- If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - ▶ If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into A_{ij} and get a better solution

100 E (E) (E) (E) (O)

► Thus if we pick an activity a_k to be in an optimal solution and then solve the subproblems, our optimal solution is A_{ij} = A_{ik} ∪ {a_k} ∪ A_{kj}, which is of size |A_{ik}| + |A_{kj}| + 1

Optimal Substructure Example

											11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	12 16

- Let¹ $S_{ij} = S_{1,11} = \{a_1, \dots, a_{11}\}$ and $A_{ij} = A_{1,11} = \{a_1, a_4, a_8, a_{11}\}$
- For $a_k = a_8$, get $S_{1k} = S_{1,8} = \{a_1, a_2, a_3, a_4\}$ and $S_{8,11} = \{a_{11}\}$
- $A_{1,8} = A_{1,11} \bigcap S_{1,8} = \{a_1, a_4\}$, which is optimal for $S_{1,8}$
- $A_{8,11} = A_{1,11} \bigcap S_{8,11} = \{a_{11}\}$, which is optimal for $S_{8,11}$

¹Left-hand boundary condition addressed by adding to *S* activity a_0 with $f_0 = 0$ and setting i = 0

Recursive Definition

Greedy Choice

▶ Let c[i, j] be the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

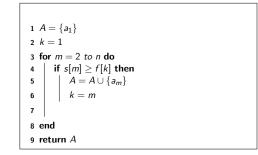
- \blacktriangleright In dynamic programming, we need to try all a_k since we don't know which one is the best choice...
- ...or do we?

- What if, instead of trying all activities a_k, we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- This is a greedy choice in that it maximizes the amount of time left over to schedule other activities
- Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be set of activities that start after a_k finishes
- ▶ If we greedily choose *a*₁ first (with earliest finish time), then *S*₁ is the only subproblem to solve

Greedy Choice (2)

- ▶ **Theorem:** Consider any nonempty subproblem *S_k* and let *a_m* be an activity in *S_k* with earliest finish time. Then *a_m* is in some maximum-size subset of mutually compatible activities of *S_k*
- Proof (by construction):
 - \blacktriangleright Let A_k be an optimal solution to S_k and let a_j have earliest finish time of all in A_k
 - If $a_j = a_m$, we're done
 - If $a_j \neq a_m$, then define $A'_k = A_k \setminus \{a_j\} \cup \{a_m\}$
 - \blacktriangleright Activities in A' are mutually compatible since those in A are mutually compatible and $f_m \leq f_j$
 - Since $|A'_k| = |A_k|$, we get that A'_k is a maximum-size subset of mutually compatible activities of S_k that includes a_m
- What this means is that there exists an optimal solution that uses the greedy choice

Greedy-Activity-Selector(s, f, n)



What is the time complexity?

Example

	ı,	fi a		
0		0	- dj	
ı	ı	4	-01 -01 -01 -01 -01 -01 -01 -01	NE-ACTIVITY-SELECTOR(r, f, 0, 11)
2	3	5	a Recurs	NE-ACTIVITY-SELECTOR(1, f, 1, 11)
3	0	6		
4	5	7	Ø1 x1=4	
			Ratursi	VE-ACTIVITY-SELECTOR(s, f, 4, 11)
5	3	9	a, a	
6	5	9	a1 a3	
7	6	10		
8	8	п	a1 a4	0g re = 8
9	8		RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11)	• a _j
9	8	12		04
10	2	14	<i>u</i> ₁ <i>a</i> ₄	
11	12	16	<i>u</i> 1 <i>a</i> 4	a ₆ a ₁₁
			RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11)	
			<i>e</i> ₁ <i>a</i> ₄	0g 011
			0 1 2 3 4 5 6 7 8	9 10 11 12 13 14 15 16 ⁶

Greedy vs Dynamic Programming (1)

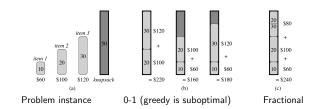
- Like with dynamic programming, greedy leverages a problem's optimal substructure property
- When can we get away with a greedy algorithm instead of DP?
- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - \blacktriangleright There are *n* items that a thief can steal, item *i* weighing w_i pounds and worth v_i dollars
 - \blacktriangleright The thief's goal is to steal a set of items weighing at most W pounds and maximizes total value
 - In the 0-1 knapsack problem, each item must be taken in its entirety (e.g., gold bars)
 - In the fractional knapsack problem, the thief can take part of an item and get a proportional amount of its value (e.g., gold dust)

Greedy vs Dynamic Programming (2)

Greedy vs Dynamic Programming (3)

- There's a greedy algorithm for the fractional knapsack problem
 - Sort the items by v_i/w_i and choose the items in descending order
 Has greedy choice property, since any optimal solution lacking the greedy
 - choice can have the greedy choice swapped in

 Works because one can always completely fill the knapsack at the last step
- Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is pseudopolynomial
 - Decision problem is NP-complete



Huffman Coding

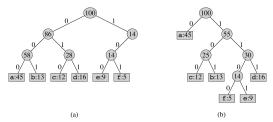
- Interested in encoding a file of symbols from some alphabet
- Want to minimize the size of the file, based on the frequencies of the symbols
- ▶ A fixed-length code uses $\lceil \log_2 n \rceil$ bits per symbol, where *n* is the size of the alphabet *C*
- > A variable-length code uses fewer bits for more frequent symbols

	a	b	с	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Huffman Coding (2)

Can represent any encoding as a binary tree



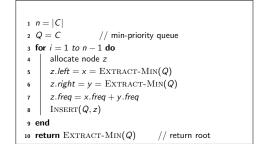
If c.freq = frequency of codeword and $d_{\mathcal{T}}(c) =$ depth, cost of tree \mathcal{T} is

 $B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$

Algorithm for Optimal Codes

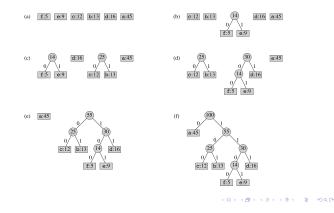
- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its tree
- Given alphabet C (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- > Frequency of new subtree is the sum of the frequencies of its children
- ▶ Then add the subtree back into the set for future consideration

Huffman(C)



Time complexity: n - 1 iterations, $O(\log n)$ time per iteration, total $O(n \log n)$

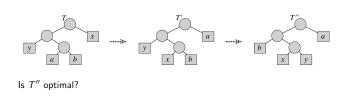
Huffman Example



Optimal Coding Has Greedy Choice Property (1)

- ▶ Lemma: Let *C* be an alphabet in which symbol $c \in C$ has frequency *c.freq* and let *x*, *y* ∈ *C* have lowest frequencies. Then there exists an optimal prefix code for *C* in which codewords for *x* and *y* have same length and differ only in the last bit.
- Proof: Let T be a tree representing an arbitrary optimal prefix code, and let a and b be siblings of maximum depth in T
- Assume, w.l.o.g., that x.freq \leq y.freq and a.freq \leq b.freq
- Since x and y are the two least frequent nodes, we get x.freq \leq a.freq and y.freq \leq b.freq
- ► Convert T to T' by exchanging a and x, then convert to T" by exchanging b and y
- In T'', x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2)



Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T' is B(T) - B(T'):

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)
= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - x.freq \cdot d_T(x)

$$= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$$

since a.freq $\geq x$.freq and $d_T(a) \geq d_T(x)$ Similarly, $B(T') - B(T'') \geq 0$, so $B(T'') \leq B(T)$, so T'' is optimal

Optimal Coding Has Optimal Substructure Property (1)

▶ **Lemma:** Let *C* be an alphabet in which symbol $c \in C$ has frequency *c.freq* and let $x, y \in C$ have lowest frequencies. Let $C' = C \setminus \{x, y\} \cup \{z\}$ and *z.freq* = *x.freq* + *y.freq*. Let *T'* be any tree representing an optimal prefix code for *C'*. Then *T*, which is *T'* with leaf *z* replaced by internal node with children *x* and *y*, represents an optimal prefix code for *C*

• **Proof:** Since
$$d_T(x) = d_T(y) = d_{T'}(z) + 1$$
,

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = (x.freq + y.freq)(d_{T'}(z) + 1)$$
$$= z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$$

Also, since $d_T(c) = d_{T'}(c)$ for all $c \in C \setminus \{x, y\}$, B(T) = B(T') + x.freq + y.freq and B(T') = B(T) - x.freq - y.freq Optimal Coding Has Optimal Substructure Property (2)

- Assume that T is not optimal, i.e., B(T'') < B(T) for some T''
- \blacktriangleright Assume w.l.o.g. (based on previous lemma) that x and y are siblings in T''
- In T'', replace x, y, and their parent with z such that z.freq = x.freq + y.freq, to get T''':

 $\begin{array}{lll} B(T''') &=& B(T'') - x.freq - y.freq & (from prev. slide) \\ &<& B(T) - x.freq - y.freq & (from T suboptimal assumption) \\ &=& B(T') & (from prev. slide) \end{array}$

• This contradicts assumption that T' is optimal for C'

10 - 10 - 12 - 12 - 10 00