
Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 10 — Maximum Flow (Chapter 26)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Introduction

I Can use a directed graph as a flow network to model:
I Data through communication networks, water/oil/gas through pipes,

assembly lines, etc.

I A flow network is a directed graph with two special vertices: source s
that produces flow and sink t that takes in flow

I Each directed edge is a conduit with a certain capacity (e.g., 200
gallons/hour)

I Vertices are conduit junctions

I Except for s and t, flow must be conserved: The flow into a vertex must
match the flow out

I Maximum flow problem: Given a flow network, determine the
maximum amount of flow that can get from s to t

I Other application: Bipartite matching

Flow Networks
I A flow network G = (V ,E) is a directed graph in which each edge

(u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0
I If (u, v) ∈ E then (v , u) 6∈ E (workaround: Fig 26.2)
I If (u, v) 6∈ E then c(u, v) = 0
I No self-loops
I Assume that every vertex in V lies on some path from the source

vertex s ∈ V to the sink vertex t ∈ V

Flows

I A flow in graph G is a function f : V × V → R that satisfies:

1. Capacity constraint: For all u, v ∈ V , 0 ≤ f (u, v) ≤ c(u, v)
(flow nonnegative and does not exceed capacity)

2. Flow conservation: For all u ∈ V \ {s, t},∑
v∈V

f (v , u) =
∑
v∈V

f (u, v)

(flow entering a vertex = flow leaving)

I The value of a flow is the net flow out of s (= net flow into t):

|f | =
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s)

I Maximum flow problem: given graph and capacities, find a flow of
maximum value

Flow Example

What is the value of this flow?

Multiple Sources and Sinks

I Might have cases where there are multiple sources and/or sinks; e.g. if
there are multiple factories producing products and/or multiple
warehouses to ship to

I Can easily accommodate graphs with multiple sources s1, . . . , sk and
multiple sinks t1, . . . , t`

I Add to G a supersource s with an edge (s, si) for i ∈ {1, . . . , k} and a
supersink t with an edge (tj , t) for j ∈ {1, . . . , `}

I Each new edge has a capacity of ∞

Multiple Sources and Sinks (2)

Ford-Fulkerson Method

I A method (rather than specific algorithm) for solving max flow

I Multiple ways of implementing, with varying running times
I Core concepts:

1. Residual network: A network Gf , which is G with capacities updated
based on the amount of flow f already going through it

2. Augmenting path: A simple path from s to t in residual network Gf

⇒ If such a path exists, then can push more flow through network

3. Cut: A partition of V into S and T where s ∈ S and t ∈ T ; can measure
net flow and capacity crossing a cut

I Method repeatedly finds an augmenting path in residual network, adds in
flow along the path, then updates residual network

Ford-Fulkerson-Method(G , s, t)

1 Initialize flow f to 0

2 while there exists augmenting path p in residual network Gf

do
3 augment flow f along p

4 end

5 return f

Residual Networks

I Given flow network G with capacities c and flow f , residual network Gf

consists of edges with capacities showing how one can change flow in G

I Define residual capacity of an edge as

cf (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

I E.g. if c(u, v) = 16 and f (u, v) = 11, then cf (u, v) = 5 and
cf (v , u) = 11

I Then can define Gf = (V ,Ef) as

Ef = {(u, v) ∈ V × V : cf (u, v) > 0}

I So Gf will have some edges not in G , and vice-versa

Residual Networks (2)

Flow Augmentation

I Gf is like a flow network (except that it can have an edge and its
reversal); so we can find a flow within it

I If f is a flow in G and f ′ is a flow in Gf , can define the augmentation
of f by f ′ as

(f ↑ f ′)(u, v) =

{
f (u, v) + f ′(u, v)− f ′(v , u) if (u, v) ∈ E
0 otherwise

I Lemma: f ↑ f ′ is a flow in G with value |f ↑ f ′| = |f |+ |f ′|
I Proof: Show that f ↑ f ′ satisfies capacity constraint and and flow

conservation; then show that |f ↑ f ′| = |f |+ |f ′| (pp. 718–719)

I Result: If we can find a flow f ′ in Gf , we can increase flow in G

Augmenting Path

I By definition of residual network, an edge (u, v) ∈ Ef with cf (u, v) > 0
can handle additional flow

I Since edges in Ef all have positive residual capacity, it follows that if
there is a simple path p from s to t in Gf , then we can increase flow
along each edge in p, thus increasing total flow

I We call p an augmenting path

I The amount of flow we can put on p is p’s residual capacity:

cf (p) = min{cf (u, v) : (u, v) is on p}

Augmenting Path (2)

p is shaded; what is cf (p)?

Augmenting Path (3)

I Lemma: Let G = (V ,E) be a flow network, f be a flow in G , and p be
an augmenting path in Gf . Define fp : V × V → R as

fp(u, v) =

{
cf (p) if (u, v) ∈ p
0 otherwise

Then fp is a flow in Gf with value |fp| = cf (p) > 0

I Corollary: Let G , f , p, and fp be as above. Then f ↑ fp is a flow in G
with value |f ↑ fp| = |f |+ |fp| > |f |

I Thus, every augmenting path increases flow in G

I When do we stop? Will we have a maximum flow if there is no
augmenting path?

Max-Flow Min-Cut Theorem

I Used to prove that once we run out of augmenting paths, we have a
maximum flow

I A cut (S ,T) of a flow network G = (V ,E) is a partition of V into
S ⊆ V and T = V \ S such that s ∈ S and t ∈ T

I Net flow across the cut (S ,T) is

f (S ,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u)

I Capacity of cut (S ,T) is

c(S ,T) =
∑
u∈S

∑
v∈T

c(u, v)

I A minimum cut is one whose capacity is smallest over all cuts

Max-Flow Min-Cut Theorem (2)

What are f (S ,T) and c(S ,T)?

Max-Flow Min-Cut Theorem (3)

I Lemma: For any flow f , the value of f is the same as the net flow
across any cut; i.e., f (S ,T) = |f | for all cuts (S ,T)

I Corollary: The value of any flow f in G is upperbounded by the
capacity of any cut of G

I Proof:

|f | = f (S ,T)

=
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u)

≤
∑
u∈S

∑
v∈T

f (u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S ,T)

Max-Flow Min-Cut Theorem (4)

I Max-Flow Min-Cut Theorem: If f is a flow in flow network G , then
these statements are equivalent:

1. f is a maximum flow in G
2. Gf has no augmenting paths
3. |f | = c(S ,T) for some (i.e., minimum) cut (S ,T) of G

I Proof: Show (1) ⇒ (2) ⇒ (3) ⇒ (1)

I (1) ⇒ (2): If Gf has augmenting path p, then fp > 0 and
|f ↑ fp| = |f |+ |fp| > |f |, a contradiction

Max-Flow Min-Cut Theorem (5)

I (2) ⇒ (3): Assume Gf has no path from s to t and define
S = {v ∈ V : s v in Gf } and T = V \ S

I (S ,T) is a cut since it partitions V , s ∈ S and t ∈ T
I Consider u ∈ S and v ∈ T :

I If (u, v) ∈ E , then f (u, v) = c(u, v) since otherwise cf (u, v) > 0 ⇒
(u, v) ∈ Ef ⇒ v ∈ S

I If (v , u) ∈ E , then f (v , u) = 0 since otherwise we’d have
cf (u, v) = f (v , u) > 0 ⇒ (u, v) ∈ Ef ⇒ v ∈ S

I If (u, v) 6∈ E and (v , u) 6∈ E , then f (u, v) = f (v , u) = 0

I Thus (by applying the Lemma as well)

|f | = f (S ,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
v∈T

∑
u∈S

f (v , u)

=
∑
u∈S

∑
v∈T

c(u, v)−
∑
v∈T

∑
u∈S

0 = c(S ,T)

Max-Flow Min-Cut Theorem (6)

I (3) ⇒ (1):
I Corollary says that |f | ≤ c(S ′,T ′) for all cuts (S ′,T ′)
I We’ve established that |f | = c(S ,T)

⇒ |f | can’t be any larger
⇒ f is a maximum flow

Ford-Fulkerson(G , s, t)

1 for each edge (u, v) ∈ E do
2 f (u, v) = 0

3 end

4 while there exists path p from s to t in Gf do
5 cf (p) = min{cf (u, v) : (u, v) is in p}
6 for each edge (u, v) ∈ p do
7 if (u, v) ∈ E then
8 f (u, v) = f (u, v) + cf (p)

9 else
10 f (v , u) = f (v , u)− cf (p)

11

12 end

13 end

Ford-Fulkerson Example

Ford-Fulkerson Example (2)

Analysis of Ford-Fulkerson

I Assume all of G ’s capacities are integers
I If not, but values still rational, can scale them
I If values irrational, might not converge

..
_

I If we choose augmenting path arbitrarily, then |f | increases by at least
one unit per iteration ⇒ number of iterations is ≤ |f ∗| = value of max
flow

I |Ef | ≤ 2|E |
I Every vertex is on a path from s to t ⇒ |V | = O(|E |)
⇒ Finding augmenting path via BFS or DFS takes time O(|E |), as do

initialization and each augmentation step

I Total time complexity: O(|E ||f ∗|)
I Not polynomial in size of input! (What is size of input?)

Example of Large |f ∗|

Arbitrary choice of augmenting path can result in small increase in |f | each
step

Takes 2× 106 augmentations

Edmonds-Karp Algorithm

I Uses Ford-Fulkerson Method
I Rather than arbitrary choice of augmenting path p from s to t in Gf ,

choose one that is shortest in terms of number of edges
I How can we easily do this?

I Will show time complexity of O(|V ||E |2), independent of |f ∗|
I Proof based on δf (u, v), which is length of shortest path from u to v in

Gf , in terms of number of edges

I Lemma: When running Edmonds-Karp on G , for all vertices
v ∈ V \ {s, t}, shortest path distance δf (u, v) in Gf increases
monotonically with each flow augmentation

Edmonds-Karp Algorithm (2)

I Theorem: When running Edmonds-Karp on G , the total number of flow
augmentations is O(|V ||E |)

I Proof: Call an edge (u, v) critical on augmenting path p if
cf (p) = cf (u, v)

I When (u, v) is critical for the first time, δf (s, v) = δf (s, u) + 1

I At the same time, (u, v) disappears from residual network and does not
reappear until its flow decreases, which only happens when (v , u)
appears on an augmenting path, at which time

δf ′(s, u) = δf ′(s, v) + 1

≥ δf (s, v) + 1 (from Lemma)

= δf (s, u) + 2

I Thus, from the time (u, v) becomes critical to the next time it does, u’s
distance from s increases by at least 2

Edmonds-Karp Algorithm (3)

I Since u’s distance from s is at most |V | − 2 (because u 6= t) and at least
0, edge (u, v) can be critical at most |V |/2 times

I There are at most 2|E | edges that can be critical in a residual network

I Every augmentation step has at least one critical edge

⇒ Number of augmentation steps is O(|V ||E |), instead of O(|f ∗|) in
previous algorithm

⇒ Edmonds-Karp time complexity is O(|V ||E |2)

Maximum Bipartite Matching

I In undirected graph G = (V ,E), a matching is a subset of edges M ⊆ E
such that for all v ∈ V , at most one edge from M is incident on v

I If an edge from M is incident on v , v is matched, otherwise unmatched

I Problem: Find a matching of maximum cardinality

I Special case: G is bipartite, meaning V partitioned into disjoint sets L
and R and all edges of E go between L and R

I Applications: Matching machines to tasks, arranging marriages between
interested parties, etc.

Bipartite Matching Example

|M| = 2 |M| = 3 (maximum)

Casting Bipartite Matching as Max Flow

I Can cast bipartite matching problem as max flow

I Given bipartite graph G = (V ,E), define corresponding flow network
G ′ = (V ′,E ′):

V ′ = V ∪ {s, t}

E ′ = {(s, u) : u ∈ L} ∪ {(u, v) : (u, v) ∈ E} ∪ {(v , t) : v ∈ R}

I c(u, v) = 1 for all (u, v) ∈ E ′

Casting Bipartite Matching as Max Flow (2)

Value of flow across cut (L ∪ {s},R ∪ {t}) equals |M|

Casting Bipartite Matching as Max Flow (3)

I Lemma: Let G = (V ,E) be a bipartite graph with V paritioned into L
and R and let G ′ = (V ′,E ′) be its corresponding flow network. If M is a
matching in G , then there is an integer-valued flow f in G ′ with value
|f | = |M|. Conversely, if there is an integer-valued flow f in G ′, then
there is a matching M in G with cardinality |M| = |f |.

I Proof: ⇒ If (u, v) ∈ M, set f (s, u) = f (u, v) = f (v , t) = 1
I Set flow of all other edges to 0
I Flow satisfies capacity constraint and flow conservation
I Flow across cut (L ∪ {s},R ∪ {t}) is |M|

I ⇐ Let f be integer-valued flow in G ′, and set

M = {(u, v) : u ∈ L, v ∈ R, f (u, v) > 0}

I Any flow into u must be exactly 1 in and exactly 1 out on one edge
I Similar argument for v ∈ R, so M is a matching with |M| = |f |

Casting Bipartite Matching as Max Flow (4)

I Theorem: If all edges in a flow network have integral capacities, then
the Ford-Fulkerson method returns a flow with value that is an integer,
and for all (u, v) ∈ V , f (u, v) is an integer

I Since the corresponding flow network for bipartite matching uses all
integer capacities, can use Ford-Fulkerson to solve matching problem

I Any matching has cardinality O(|V |), so the corresponding flow network
has a maximum flow with value |f ∗| = O(|V |), so time complexity of
matching is O(|V ||E |)

	Introduction
	Flow Networks
	Example
	Multiple Sources and Sinks

	Ford-Fulkerson Method
	Residual Networks
	Flow Augmentation
	Augmenting Path
	Max-Flow Min-Cut Theorem
	Basic Ford-Fulkerson Algorithm
	Ford-Fulkerson Example
	Analysis of Ford-Fulkerson

	Edmonds-Karp Algorithm
	Maximum Bipartite Matching
	Example
	Casting Bipartite Matching as Max Flow

