
Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 08 — Maximum Flow (Chapter 26)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

I Can use a directed graph as a flow network to model:
I Data through communication networks, water/oil/gas through pipes,

assembly lines, etc.

I A flow network is a directed graph with two special vertices: source s
that produces flow and sink t that takes in flow

I Each directed edge is a conduit with a certain capacity (e.g. 200
gallons/hour)

I Vertices are conduit junctions

I Except for s and t, flow must be conserved: The flow into a vertex must
match the flow out

I Maximum flow problem: Given a flow network, determine the maximum
amount of flow that can get from s to t

I Other application: Bipartite matching

Flow Networks

I A flow network G = (V ,E ) is a directed graph in which each edge
(u, v) 2 E has a nonnegative capacity c(u, v) � 0

I If (u, v) 2 E then (v , u) 62 E (workaround: Fig 26.2)
I If (u, v) 62 E then c(u, v) = 0
I No self-loops
I Assume that every vertex in V lies on some path from the source vertex

s 2 V to the sink vertex t 2 V

Flows

I A flow in graph G is a function f : V ⇥ V ! R that satisfies:
1. Capacity constraint: For all u, v 2 V , 0  f (u, v)  c(u, v)

(flow nonnegative and does not exceed capacity)
2. Flow conservation: For all u 2 V \ {s, t},

X

v2V

f (v , u) =
X

v2V

f (u, v)

(flow entering a vertex = flow leaving)

I The value of a flow is the net flow out of s (= net flow into t):

|f | =
X

v2V
f (s, v)�

X

v2V
f (v , s)

I Maximum flow problem: given graph and capacities, find a flow of
maximum value

Flow Example

What is the value of this flow?

Multiple Sources and Sinks

I Might have cases where there are multiple sources and/or sinks; e.g. if
there are multiple factories producing products and/or multiple
warehouses to ship to

I Can easily accommodate graphs with multiple sources s1, . . . , sk and
multiple sinks t1, . . . , t`

I Add to G a supersource s with an edge (s, s
i

) for i 2 {1, . . . , k} and a
supersink t with an edge (t

j

, t) for j 2 {1, . . . , `}
I Each new edge has a capacity of 1



Multiple Sources and Sinks (2) Ford-Fulkerson Method

I A method (rather than specific algorithm) for solving max flow

I Multiple ways of implementing, with varying running times
I Core concepts:

1. Residual network: A network G
f

, which is G with capacities updated
based on the amount of flow f already going through it

2. Augmenting path: A simple path from s to t in residual network G
f

) If such a path exists, then can push more flow through network

3. Cut: A partition of V into S and T where s 2 S and t 2 T ; can measure
net flow and capacity crossing a cut

I Method repeatedly finds an augmenting path in residual network, adds in
flow along the path, then updates residual network

Ford-Fulkerson-Method(G , s, t)

1 Initialize flow f to 0

2 while there exists augmenting path p in residual network G

f

do

3 augment flow f along p

4 end

5 return f

Residual Networks

I Given flow network G with capacities c and flow f , residual network G
f

consists of edges with capacities showing how one can change flow in G

I Define residual capacity of an edge as

c
f

(u, v) =

8
<

:

c(u, v)� f (u, v) if (u, v) 2 E
f (v , u) if (v , u) 2 E
0 otherwise

I E.g. if c(u, v) = 16 and f (u, v) = 11, then c
f

(u, v) = 5 and
c
f

(v , u) = 11

I Then can define G
f

= (V ,E
f

) as

E
f

= {(u, v) 2 V ⇥ V : c
f

(u, v) > 0}

I So G
f

will have some edges not in G , and vice-versa

Residual Networks (2) Flow Augmentation

I G
f

is like a flow network (except that it can have an edge and its
reversal); so we can find a flow within it

I If f is a flow in G and f 0 is a flow in G
f

, can define the augmentation of
f by f 0 as

(f " f 0)(u, v) =

⇢
f (u, v) + f 0(u, v)� f 0(v , u) if (u, v) 2 E
0 otherwise

I
Lemma: f " f 0 is a flow in G with value |f " f 0| = |f |+ |f 0|

I
Proof: Not di�cult to show that f " f 0 satisfies capacity constraint and
and flow conservation; then show that |f " f 0| = |f |+ |f 0| (pp. 718–719)

I Result: If we can find a flow f 0 in G
f

, we can increase flow in G



Augmenting Path

I By definition of residual network, an edge (u, v) 2 E
f

with c
f

(u, v) > 0
can handle additional flow

I Since edges in E
f

all have positive residual capacity, it follows that if
there is a simple path p from s to t in G

f

, then we can increase flow
along each edge in p, thus increasing total flow

I We call p an augmenting path

I The amount of flow we can put on p is p’s residual capacity:

c
f

(p) = min{c
f

(u, v) : (u, v) is on p}

Augmenting Path (2)

p is shaded; what is c
f

(p)?

Augmenting Path (3)

I
Lemma: Let G = (V ,E ) be a flow network, f be a flow in G , and p be
an augmenting path in G

f

. Define f
p

: V ⇥ V ! R as

f
p

(u, v) =

⇢
c
f

(p) if (u, v) 2 p
0 otherwise

Then f
p

is a flow in G
f

with value |f
p

| = c
f

(p) > 0

I
Corollary: Let G , f , p, and f

p

be as above. Then f " f
p

is a flow in G
with value |f " f

p

| = |f |+ |f
p

| > |f |
I Thus, every augmenting path increases flow in G

I When do we stop? Will we have a maximum flow if there is no
augmenting path?

Max-Flow Min-Cut Theorem

I Used to prove that once we run out of augmenting paths, we have a
maximum flow

I A cut (S ,T ) of a flow network G = (V ,E ) is a partition of V into
S ✓ V and T = V \ S such that s 2 S and t 2 T

I Net flow across the cut (S ,T ) is

f (S ,T ) =
X

u2S

X

v2T
f (u, v)�

X

u2S

X

v2T
f (v , u)

I Capacity of cut (S ,T ) is

c(S ,T ) =
X

u2S

X

v2T
c(u, v)

I A minimum cut is one whose capacity is smallest over all cuts

Max-Flow Min-Cut Theorem (2)

What are f (S ,T ) and c(S ,T )?

Max-Flow Min-Cut Theorem (3)

I
Lemma: For any flow f , the value of f is the same as the net flow
across any cut; i.e. f (S ,T ) = |f | for all cuts (S ,T )

I
Corollary: The value of any flow f in G is upperbounded by the
capacity of any cut of G

I
Proof:

|f | = f (S ,T )

=
X

u2S

X

v2T
f (u, v)�

X

u2S

X

v2T
f (v , u)


X

u2S

X

v2T
f (u, v)


X

u2S

X

v2T
c(u, v)

= c(S ,T )



Max-Flow Min-Cut Theorem (4)

I
Max-Flow Min-Cut Theorem: If f is a flow in flow network G , then
these statements are equivalent:
1. f is a maximum flow in G
2. G

f

has no augmenting paths
3. |f | = c(S ,T ) for some (i.e. minimum) cut (S ,T ) of G

I
Proof: Show (1) ) (2) ) (3) ) (1)

I
(1) ) (2): If G

f

has augmenting path p, then f
p

> 0 and
|f " f

p

| = |f |+ |f
p

| > |f |, a contradiction

Max-Flow Min-Cut Theorem (5)

I
(2) ) (3): Assume G

f

has no path from s to t and define
S = {v 2 V : s  v in G

f

} and T = V \ S
I (S ,T ) is a cut since it partitions V , s 2 S and t 2 T
I Consider u 2 S and v 2 T :

I
If (u, v) 2 E , then f (u, v) = c(u, v) since otherwise c

f

(u, v) > 0 )
(u, v) 2 E

f

) v 2 S

I
If (v , u) 2 E , then f (v , u) = 0 since otherwise we’d have

c

f

(u, v) = f (v , u) > 0 ) (u, v) 2 E

f

) v 2 S

I
If (u, v) 62 E and (v , u) 62 E , then f (u, v) = f (v , u) = 0

I Thus (by applying the Lemma as well)

|f | = f (S ,T ) =
X

u2S

X

v2T

f (u, v)�
X

v2T

X

u2S

f (v , u)

=
X

u2S

X

v2T

c(u, v)�
X

v2T

X

u2S

0 = c(S ,T )

Max-Flow Min-Cut Theorem (6)

I
(3) ) (1):

I Corollary says that |f |  c(S 0,T 0) for all cuts (S 0,T 0)
I We’ve established that |f | = c(S ,T )

) |f | can’t be any larger

) f is a maximum flow

Ford-Fulkerson(G , s, t)

1 for each edge (u, v) 2 E do

2 f (u, v) = 0

3 end

4 while there exists path p from s to t in G

f

do

5 c

f

(p) = min{c
f

(u, v) : (u, v) is in p}
6 for each edge (u, v) 2 p do

7 if (u, v) 2 E then

8 f (u, v) = f (u, v) + c

f

(p)

9 else

10 f (v , u) = f (v , u)� c

f

(p)

11

12 end

13 end

Ford-Fulkerson Example Ford-Fulkerson Example (2)



Analysis of Ford-Fulkerson

I Assume all of G ’s capacities are integers
I If not, but values still rational, can scale them
I If values irrational, might not converge

..
_

I If we choose augmenting path arbitrarily, then |f | increases by at least
one unit per iteration ) number of iterations is  |f ⇤| = value of max
flow

I |E
f

|  2|E |
I Every vertex is on a path from s to t ) |V | = O(|E |)
) Finding augmenting path via BFS or DFS takes time O(|E |), as do

initialization and each augmentation step

I Total time complexity: O(|E ||f ⇤|)
I Not polynomial in size of input! (What is size of input?)

Example of Large |f ⇤|

Arbitrary choice of augmenting path can result in small increase in |f | each
step

Takes 2⇥ 106 augmentations

Edmonds-Karp Algorithm

I Uses Ford-Fulkerson Method
I Rather than arbitrary choice of augmenting path p from s to t in G

f

,
choose one that is shortest in terms of number of edges

I How can we easily do this?

I Will show time complexity of O(|V ||E |2), independent of |f ⇤|
I Proof based on �

f

(u, v), which is length of shortest path from u to v in
G
f

, in terms of number of edges

I
Lemma: When running Edmonds-Karp on G , for all vertices
v 2 V \ {s, t}, shortest path distance �

f

(u, v) in G
f

increases
monotonically with each flow augmentation

Edmonds-Karp Algorithm (2)

I
Theorem: When running Edmonds-Karp on G , the total number of flow
augmentations is O(|V ||E |)

I
Proof: Call an edge (u, v) critical on augmenting path p if
c
f

(p) = c
f

(u, v)

I When (u, v) is critical for the first time, �
f

(s, v) = �
f

(s, u) + 1

I At the same time, (u, v) disappears from residual network and does not
reappear until its flow decreases, which only happens when (v , u)
appears on an augmenting path, at which time

�
f

0(s, u) = �
f

0(s, v) + 1

� �
f

(s, v) + 1 (from Lemma)

= �
f

(s, u) + 2

I Thus, from the time (u, v) becomes critical to the next time it does, u’s
distance from s increases by at least 2

Edmonds-Karp Algorithm (3)

I Since u’s distance from s is at most |V |� 2 (because u 6= t) and at least
0, edge (u, v) can be critical at most |V |/2 times

I There are at most 2|E | edges that can be critical in a residual network

I Every augmentation step has at least one critical edge

) Number of augmentation steps is O(|V ||E |), instead of O(|f ⇤|) in
previous algorithm

) Edmonds-Karp time complexity is O(|V ||E |2)

Maximum Bipartite Matching

I In an undirected graph G = (V ,E ), a matching is a subset of edges
M ✓ E such that for all v 2 V , at most one edge from M is incident on
v

I If an edge from M is incident on v , v is matched, otherwise unmatched

I
Problem: Find a matching of maximum cardinality

I
Special case: G is bipartite, meaning V partitioned into disjoint sets L
and R and all edges of E go between L and R

I Applications: Matching machines to tasks, arranging marriages between
interested parties, etc.



Bipartite Matching Example

|M| = 2 |M| = 3 (maximum)

Casting Bipartite Matching as Max Flow

I Can cast bipartite matching problem as max flow

I Given bipartite graph G = (V ,E ), define corresponding flow network
G 0 = (V 0,E 0):

V 0 = V [ {s, t}

E 0 = {(s, u) : u 2 L} [ {(u, v) : (u, v) 2 E} [ {(v , t) : v 2 R}

I c(u, v) = 1 for all (u, v) 2 E 0

Casting Bipartite Matching as Max Flow (2)

Value of flow across cut (L [ {s},R [ {t}) equals |M|

Casting Bipartite Matching as Max Flow (3)

I
Lemma: Let G = (V ,E ) be a bipartite graph with V paritioned into L
and R and let G 0 = (V 0,E 0) be its corresponding flow network. If M is a
matching in G , then there is an integer-valued flow f in G 0 with value
|f | = |M|. Conversely, if there is an integer-valued flow f in G 0, then
there is a matching M in G with cardinality |M| = |f |.

I
Proof: ) If (u, v) 2 M, set f (s, u) = f (u, v) = f (v , t) = 1

I Set flow of all other edges to 0
I Flow satisfies capacity constraint and flow conservation
I Flow across cut (L [ {s},R [ {t}) is |M|

I ( Let f be integer-valued flow in G 0, and set

M = {(u, v) : u 2 L, v 2 R , f (u, v) > 0}

I Any flow into u must be exactly 1 in and exactly 1 out on one edge
I Similar argument for v 2 R , so M is a matching with |M| = |f |

Casting Bipartite Matching as Max Flow (4)

I
Theorem: If all edges in a flow network have integral capacities, then
the Ford-Fulkerson method returns a flow with value that is an integer,
and for all (u, v) 2 V , f (u, v) is an integer

I Since the corresponding flow network for bipartite matching uses all
integer capacities, can use Ford-Fulkerson to solve matching problem

I Any matching has cardinality O(|V |), so the corresponding flow network
has a maximum flow with value |f ⇤| = O(|V |), so time complexity of
matching is O(|V ||E |)


