
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 05 — Single-Source Shortest Paths (Chapter 24)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Introduction

I Given a weighted, directed graph G = (V ,E) with weight function
w : E → R

I The weight of path p = 〈v0, v1, . . . , vk〉 is the sum of the weights of its
edges:

w(p) =
k∑

i=1

w(vi−1, vi)

I Then the shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p with weight w(p) = δ(u, v)

I Applications: Network routing, driving directions

Types of Shortest Path Problems

Given G as described earlier,

I Single-Source Shortest Paths: Find shortest paths from source node
s to every other node

I Single-Destination Shortest Paths: Find shortest paths from every
node to destination t

I Can solve with SSSP solution. How?

I Single-Pair Shortest Path: Find shortest path from specific node u to
specific node v

I Can solve via SSSP; no asymptotically faster algorithm known

I All-Pairs Shortest Paths: Find shortest paths between every pair of
nodes

I Can solve via repeated application of SSSP, but can do better

Optimal Substructure of a Shortest Path

I The shortest paths problem has the optimal substructure property: If
p = 〈v0, v1, . . . , vk〉 is a SP from v0 to vk , then for 0 ≤ i ≤ j ≤ k ,
pij = 〈vi , vi+1, . . . , vj〉 is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij
 vj

pjk
 vk with weight w(p) = w(p0i) + w(pij) + w(pjk).

If there exists a path p′ij from vi to vj with w(p′ij) < w(pij), then p is not a

SP since v0
p0i vi

p′
ij
 vj

pjk
 vk has less weight than p

I This property helps us to use a greedy algorithm for this problem

Negative-Weight Edges (1)

I What happens if the graph G has edges with negative weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
right circumstances (which circumstances?)

Negative-Weight Edges (2)

Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle

Relaxation

I Given weighted graph G = (V ,E) with source node s ∈ V and other
node v ∈ V (v 6= s), we’ll maintain d [v], which is upper bound on
δ(s, v)

I Relaxation of an edge (u, v) is the process of testing whether we can
decrease d [v], yielding a tighter upper bound

Initialize-Single-Source(G , s)

1 for each vertex v ∈ V do
2 d [v] =∞
3 π[v] = nil

4 end

5 d [s] = 0

How is the invariant maintained?

Relax(u, v ,w)

1 if d [v] > d [u] + w(u, v) then
2 d [v] = d [u] + w(u, v)

3 π[v] = u

4

How do we know that we can tighten d [v] like this?

Relaxation Example

Numbers in nodes are values of d

Bellman-Ford Algorithm

I Greedy algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V | − 1 passes over all edges, relaxing each edge during each pass

Bellman-Ford(G ,w , s)

1 Initialize-Single-Source(G , s)

2 for i = 1 to |V | − 1 do
3 for each edge (u, v) ∈ E do
4 Relax(u, v ,w)

5 end

6 end

7 for each edge (u, v) ∈ E do
8 if d [v] > d [u] + w(u, v) then
9 return false // G has a negative-wt cycle

10

11 end

12 return true // G has no neg-wt cycle reachable frm s

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)

Time Complexity of Bellman-Ford Algorithm

I Initialize-Single-Source takes how much time?

I Relax takes how much time?

I What is time complexity of relaxation steps (nested loops)?

I What is time complexity of steps to check for negative-weight cycles?

I What is total time complexity?

Correctness of Bellman-Ford Algorithm

I Assume no negative-weight cycles

I Since no cycles appear in SPs, every SP has at most |V | − 1 edges

I Then define sets S0,S1, . . .S|V |−1:

Sk = {v ∈ V : ∃s p
 v s.t. δ(s, v) = w(p) and |p| ≤ k}

I Loop invariant: After ith iteration of outer relaxation loop (Line 1), for
all v ∈ Si , we have d [v] = δ(s, v)

I Can prove via induction

I Implies that, after |V | − 1 iterations, d [v] = δ(s, v) for all
v ∈ V = S|V |−1

Correctness of Bellman-Ford Algorithm (2)

I Let c = 〈v0, v1, . . . , vk = v0〉 be neg-weight cycle reachable from s:

k∑
i=1

w(vi−1, vi) < 0

I If algorithm incorrectly returns true, then (due to Line 8) for all nodes
in the cycle (i = 1, 2, . . . , k),

d [vi] ≤ d [vi−1] + w(vi−1, vi)

I By summing, we get

k∑
i=1

d [vi] ≤
k∑

i=1

d [vi−1] +
k∑

i=1

w(vi−1, vi)

I Since v0 = vk ,
∑k

i=1 d [vi] =
∑k

i=1 d [vi−1]

I This implies that 0 ≤
∑k

i=1 w(vi−1, vi), a contradiction

SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V | − 1 iterations of edge relaxations?

I To confirm that SP information fully propagated to all nodes

I What if we knew that, after we relaxed an edge just once, we would be
completely done with it?

I Can do this if G a dag and we relax edges in correct order (what order?)

Dag-Shortest-Paths(G ,w , s)

1 topologically sort the vertices of G

2 Initialize-Single-Source(G , s)

3 for each vertex u ∈ V , taken in topo sorted order
do

4 for each v ∈ Adj [u] do
5 Relax(u, v ,w)

6 end

7 end

SSSP dag Example (1)

SSSP dag Example (2)

Time Complexity of SSSP in dag

I Topological sort takes how much time?

I Initialize-Single-Source takes how much time?

I How many calls to Relax?

I What is total time complexity?

Dijkstra’s Algorithm

I Faster than Bellman-Ford

I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path weights from s have

been determined
I Repeatedly select u ∈ V \ S with minimum SP estimate, add u to S , and

relax all edges leaving u

I Uses min-priority queue

Dijkstra(G ,w , s)

1 Initialize-Single-Source(G , s)

2 S = ∅
3 Q = V

4 while Q 6= ∅ do
5 u = Extract-Min(Q)

6 S = S ∪ {u}
7 for each v ∈ Adj [u] do
8 Relax(u, v ,w)

9 end

10 end

Dijkstra’s Algorithm Example (1)

Dijkstra’s Algorithm Example (2)

Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I Initialize-Single-Source takes how much time?
I What is time complexity to create Q?
I How many calls to Extract-Min?
I What is time complexity of Extract-Min?
I How many calls to Relax?
I What is time complexity of Relax?
I What is total time complexity?

I Using heap to implement priority queue, what are the answers to the
above questions?

I When might you choose one queue implementation over another?

Correctness of Dijkstra’s Algorithm

I Invariant: At the start of each iteration of the while loop, d [v] = δ(s, v)
for all v ∈ S

I Prove by contradiction (p. 660)

I Since all vertices eventually end up in S , get correctness of the algorithm

Linear Programming

I Given an m×n matrix A and a size-m vector b and a size-n vector c , find
a vector x of n elements that maximizes

∑n
i=1 cixi subject to Ax ≤ b

I E.g. c =
[

2 −3
]
, A =

 1 1
1 −2
−1 0

, b =

 22
4
−8

 implies:

maximize 2x1 − 3x2 subject to

x1 + x2 ≤ 22

x1 − 2x2 ≤ 4

x1 ≥ 8

I Solution: x1 = 16, x2 = 6

Difference Constraints and Feasibility

I Decision version of this problem: No objective function to maximize;
simply want to know if there exists a feasible solution, i.e. an x that
satisfies Ax ≤ b

I Special case is when each row of A has exactly one 1 and one −1,
resulting in a set of difference constraints of the form

xj − xi ≤ bk

I Applications: Any application in which a certain amount of time must
pass between events (x variables represent times of events)

Difference Constraints and Feasibility (2)

A =

1 −1 0 0 0
1 0 0 0 −1
0 1 0 0 −1
−1 0 1 0 0
−1 0 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1

and b =

0
−1
1
5
4
−1
−3
−3

Difference Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 − x2 ≤ 0

x1 − x5 ≤ −1

x2 − x5 ≤ 1

x3 − x1 ≤ 5

x4 − x1 ≤ 4

x4 − x3 ≤ −1

x5 − x3 ≤ −3

x5 − x4 ≤ −3

One solution: x = (−5,−3, 0,−1,−4)

Constraint Graphs

I Can represent instances of this problem in a constraint graph
G = (V ,E)

I Define a vertex for each variable, plus one more: If variables are
x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from v0 to each
other vertex:

E = {(vi , vj) : xj − xi ≤ bk is a constraint}
∪{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all ` 6= 0

Constraint Graph Example

Solving Feasibility with Bellman-Ford

I Theorem: Let G be the constraint graph for a system of difference
constraints. If G has a negative-weight cycle, then there is no feasible
solution to the system. If G has no negative-weight cycle, then a feasible
solution is

x = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

I For any edge (vi , vj) ∈ E , δ(v0, vj) ≤ δ(v0, vi) + w(vi , vj) ⇒
δ(v0, vj)− δ(v0, vi) ≤ w(vi , vj)

I If there is a negative-weight cycle c = 〈vi , vi+1, . . . , vk〉, then there is a
system of inequalities xi+1 − xi ≤ w(vi , vi+1), xi+2 − xi+1 ≤ w(vi+1, vi+2),
. . ., xk − xk−1 ≤ w(vk−1, vk). Summing both sides gives 0 ≤ w(c) < 0,
implying that a negative-weight cycle indicates no solution

I Can solve this with Bellman-Ford in time O(n2 + nm)

	Introduction
	Optimal Substructure of a Shortest Path
	Negative-Weight Edges
	Cycles
	Relaxation

	Bellman-Ford Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	SSSPs in Directed Acyclic Graphs
	Introduction
	The Algorithm
	Example
	Analysis

	Dijkstra's Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	Difference Constraints and Shortest Paths
	Linear Programming
	Difference Constraints and Feasibility
	Constraint Graphs
	Solving Feasibility with Bellman-Ford

