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Introduction

I Given a weighted, directed graph G = (V ,E ) with weight function
w : E → R

I The weight of path p = 〈v0, v1, . . . , vk〉 is the sum of the weights of its
edges:

w(p) =
k∑

i=1

w(vi−1, vi )

I Then the shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p with weight w(p) = δ(u, v)

I Applications: Network routing, driving directions



Types of Shortest Path Problems

Given G as described earlier,

I Single-Source Shortest Paths: Find shortest paths from source node
s to every other node

I Single-Destination Shortest Paths: Find shortest paths from every
node to destination t

I Can solve with SSSP solution. How?

I Single-Pair Shortest Path: Find shortest path from specific node u to
specific node v

I Can solve via SSSP; no asymptotically faster algorithm known

I All-Pairs Shortest Paths: Find shortest paths between every pair of
nodes

I Can solve via repeated application of SSSP, but can do better



Optimal Substructure of a Shortest Path

I The shortest paths problem has the optimal substructure property: If
p = 〈v0, v1, . . . , vk〉 is a SP from v0 to vk , then for 0 ≤ i ≤ j ≤ k ,
pij = 〈vi , vi+1, . . . , vj〉 is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij
 vj

pjk
 vk with weight w(p) = w(p0i ) + w(pij) + w(pjk).

If there exists a path p′ij from vi to vj with w(p′ij) < w(pij), then p is not a

SP since v0
p0i vi

p′
ij
 vj

pjk
 vk has less weight than p

I This property helps us to use a greedy algorithm for this problem



Negative-Weight Edges (1)

I What happens if the graph G has edges with negative weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
right circumstances (which circumstances?)



Negative-Weight Edges (2)



Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle



Relaxation

I Given weighted graph G = (V ,E ) with source node s ∈ V and other
node v ∈ V (v 6= s), we’ll maintain d [v ], which is upper bound on
δ(s, v)

I Relaxation of an edge (u, v) is the process of testing whether we can
decrease d [v ], yielding a tighter upper bound



Initialize-Single-Source(G , s)

1 for each vertex v ∈ V do
2 d [v ] =∞
3 π[v ] = nil

4 end

5 d [s] = 0

How is the invariant maintained?



Relax(u, v ,w)

1 if d [v ] > d [u] + w(u, v) then
2 d [v ] = d [u] + w(u, v)

3 π[v ] = u

4

How do we know that we can tighten d [v ] like this?



Relaxation Example

Numbers in nodes are values of d



Bellman-Ford Algorithm

I Greedy algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V | − 1 passes over all edges, relaxing each edge during each pass



Bellman-Ford(G ,w , s)

1 Initialize-Single-Source(G , s)

2 for i = 1 to |V | − 1 do
3 for each edge (u, v) ∈ E do
4 Relax(u, v ,w)

5 end

6 end

7 for each edge (u, v) ∈ E do
8 if d [v ] > d [u] + w(u, v) then
9 return false // G has a negative-wt cycle

10

11 end

12 return true // G has no neg-wt cycle reachable frm s



Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)



Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)



Time Complexity of Bellman-Ford Algorithm

I Initialize-Single-Source takes how much time?

I Relax takes how much time?

I What is time complexity of relaxation steps (nested loops)?

I What is time complexity of steps to check for negative-weight cycles?

I What is total time complexity?



Correctness of Bellman-Ford Algorithm

I Assume no negative-weight cycles

I Since no cycles appear in SPs, every SP has at most |V | − 1 edges

I Then define sets S0,S1, . . .S|V |−1:

Sk = {v ∈ V : ∃s p
 v s.t. δ(s, v) = w(p) and |p| ≤ k}

I Loop invariant: After ith iteration of outer relaxation loop (Line 1), for
all v ∈ Si , we have d [v ] = δ(s, v)

I Can prove via induction

I Implies that, after |V | − 1 iterations, d [v ] = δ(s, v) for all
v ∈ V = S|V |−1



Correctness of Bellman-Ford Algorithm (2)

I Let c = 〈v0, v1, . . . , vk = v0〉 be neg-weight cycle reachable from s:

k∑
i=1

w(vi−1, vi ) < 0

I If algorithm incorrectly returns true, then (due to Line 8) for all nodes
in the cycle (i = 1, 2, . . . , k),

d [vi ] ≤ d [vi−1] + w(vi−1, vi )

I By summing, we get

k∑
i=1

d [vi ] ≤
k∑

i=1

d [vi−1] +
k∑

i=1

w(vi−1, vi )

I Since v0 = vk ,
∑k

i=1 d [vi ] =
∑k

i=1 d [vi−1]

I This implies that 0 ≤
∑k

i=1 w(vi−1, vi ), a contradiction



SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V | − 1 iterations of edge relaxations?

I To confirm that SP information fully propagated to all nodes

I What if we knew that, after we relaxed an edge just once, we would be
completely done with it?

I Can do this if G a dag and we relax edges in correct order (what order?)



Dag-Shortest-Paths(G ,w , s)

1 topologically sort the vertices of G

2 Initialize-Single-Source(G , s)

3 for each vertex u ∈ V , taken in topo sorted order
do

4 for each v ∈ Adj [u] do
5 Relax(u, v ,w)

6 end

7 end



SSSP dag Example (1)



SSSP dag Example (2)



Time Complexity of SSSP in dag

I Topological sort takes how much time?

I Initialize-Single-Source takes how much time?

I How many calls to Relax?

I What is total time complexity?



Dijkstra’s Algorithm

I Faster than Bellman-Ford

I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path weights from s have

been determined
I Repeatedly select u ∈ V \ S with minimum SP estimate, add u to S , and

relax all edges leaving u

I Uses min-priority queue



Dijkstra(G ,w , s)

1 Initialize-Single-Source(G , s)

2 S = ∅
3 Q = V

4 while Q 6= ∅ do
5 u = Extract-Min(Q)

6 S = S ∪ {u}
7 for each v ∈ Adj [u] do
8 Relax(u, v ,w)

9 end

10 end



Dijkstra’s Algorithm Example (1)



Dijkstra’s Algorithm Example (2)



Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I Initialize-Single-Source takes how much time?
I What is time complexity to create Q?
I How many calls to Extract-Min?
I What is time complexity of Extract-Min?
I How many calls to Relax?
I What is time complexity of Relax?
I What is total time complexity?

I Using heap to implement priority queue, what are the answers to the
above questions?

I When might you choose one queue implementation over another?



Correctness of Dijkstra’s Algorithm

I Invariant: At the start of each iteration of the while loop, d [v ] = δ(s, v)
for all v ∈ S

I Prove by contradiction (p. 660)

I Since all vertices eventually end up in S , get correctness of the algorithm



Linear Programming

I Given an m×n matrix A and a size-m vector b and a size-n vector c , find
a vector x of n elements that maximizes

∑n
i=1 cixi subject to Ax ≤ b

I E.g. c =
[

2 −3
]
, A =

 1 1
1 −2
−1 0

, b =

 22
4
−8

 implies:

maximize 2x1 − 3x2 subject to

x1 + x2 ≤ 22

x1 − 2x2 ≤ 4

x1 ≥ 8

I Solution: x1 = 16, x2 = 6



Difference Constraints and Feasibility

I Decision version of this problem: No objective function to maximize;
simply want to know if there exists a feasible solution, i.e. an x that
satisfies Ax ≤ b

I Special case is when each row of A has exactly one 1 and one −1,
resulting in a set of difference constraints of the form

xj − xi ≤ bk

I Applications: Any application in which a certain amount of time must
pass between events (x variables represent times of events)



Difference Constraints and Feasibility (2)

A =



1 −1 0 0 0
1 0 0 0 −1
0 1 0 0 −1
−1 0 1 0 0
−1 0 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


and b =



0
−1
1
5
4
−1
−3
−3





Difference Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 − x2 ≤ 0

x1 − x5 ≤ −1

x2 − x5 ≤ 1

x3 − x1 ≤ 5

x4 − x1 ≤ 4

x4 − x3 ≤ −1

x5 − x3 ≤ −3

x5 − x4 ≤ −3

One solution: x = (−5,−3, 0,−1,−4)



Constraint Graphs

I Can represent instances of this problem in a constraint graph
G = (V ,E )

I Define a vertex for each variable, plus one more: If variables are
x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from v0 to each
other vertex:

E = {(vi , vj) : xj − xi ≤ bk is a constraint}
∪{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all ` 6= 0



Constraint Graph Example



Solving Feasibility with Bellman-Ford

I Theorem: Let G be the constraint graph for a system of difference
constraints. If G has a negative-weight cycle, then there is no feasible
solution to the system. If G has no negative-weight cycle, then a feasible
solution is

x = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

I For any edge (vi , vj) ∈ E , δ(v0, vj) ≤ δ(v0, vi ) + w(vi , vj) ⇒
δ(v0, vj)− δ(v0, vi ) ≤ w(vi , vj)

I If there is a negative-weight cycle c = 〈vi , vi+1, . . . , vk〉, then there is a
system of inequalities xi+1 − xi ≤ w(vi , vi+1), xi+2 − xi+1 ≤ w(vi+1, vi+2),
. . ., xk − xk−1 ≤ w(vk−1, vk). Summing both sides gives 0 ≤ w(c) < 0,
implying that a negative-weight cycle indicates no solution

I Can solve this with Bellman-Ford in time O(n2 + nm)
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