Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 05 — Single-Source Shortest Paths (Chapter 24)

> Stephen Scott (Adapted from Vinodchandran N. Variyam)

> > sscott@cse.unl.edu

Introduction

- Given a weighted, directed graph G = (V, E) with weight function
 w : E → ℝ
- ► The weight of path p = ⟨v₀, v₁,..., v_k⟩ is the sum of the weights of its edges:

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

Then the shortest-path weight from u to v is

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\rightsquigarrow} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- A shortest path from u to v is any path p with weight $w(p) = \delta(u, v)$
- Applications: Network routing, driving directions

Types of Shortest Path Problems

Given G as described earlier,

- Single-Source Shortest Paths: Find shortest paths from source node s to every other node
- Single-Destination Shortest Paths: Find shortest paths from every node to destination t
 - Can solve with SSSP solution. How?
- Single-Pair Shortest Path: Find shortest path from specific node u to specific node v
 - ► Can solve via SSSP; no asymptotically faster algorithm known
- All-Pairs Shortest Paths: Find shortest paths between every pair of nodes
 - Can solve via repeated application of SSSP, but can do better

Optimal Substructure of a Shortest Path

► The shortest paths problem has the **optimal substructure property**: If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a SP from v_0 to v_k , then for $0 \le i \le j \le k$, $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ is a SP from v_i to v_j **Proof:** Let $p = v_0 \stackrel{p_{0i}}{\longrightarrow} v_i \stackrel{p_{ij}}{\longrightarrow} v_k$ with weight $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$. If there exists a path p'_{ij} from v_i to v_j with $w(p'_{ij}) < w(p_{ij})$, then p is not a SP since $v_0 \stackrel{p_{0i}}{\longrightarrow} v_i \stackrel{p'_{ij}}{\longrightarrow} v_k$ has less weight than p

This property helps us to use a greedy algorithm for this problem

Negative-Weight Edges (1)

- ▶ What happens if the graph *G* has edges with negative weights?
- Dijkstra's algorithm cannot handle this, Bellman-Ford can, under the right circumstances (which circumstances?)

Negative-Weight Edges (2)

Cycles

What kinds of cycles might appear in a shortest path?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

- Negative-weight cycle
- Zero-weight cycle
- Positive-weight cycle

Relaxation

- Given weighted graph G = (V, E) with source node s ∈ V and other node v ∈ V (v ≠ s), we'll maintain d[v], which is upper bound on δ(s, v)
- Relaxation of an edge (u, v) is the process of testing whether we can decrease d[v], yielding a tighter upper bound

Initialize-Single-Source(G, s)

1 for each vertex
$$v \in V$$
 do
2 $| d[v] = \infty$
3 $| \pi[v] = \text{NIL}$
4 end
5 $d[s] = 0$

How is the invariant maintained?

 $\operatorname{Relax}(u, v, w)$

1 if
$$d[v] > d[u] + w(u, v)$$
 then
2 $| d[v] = d[u] + w(u, v)$
3 $| \pi[v] = u$
4

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

How do we know that we can tighten d[v] like this?

Relaxation Example

Numbers in nodes are values of d

Bellman-Ford Algorithm

- Greedy algorithm
- Works with negative-weight edges and detects if there is a negative-weight cycle
- \blacktriangleright Makes |V| 1 passes over all edges, relaxing each edge during each pass

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Bellman-Ford(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i = 1 to |V| - 1 do
      for each edge (u, v) \in E do
3
      \operatorname{ReLAX}(u, v, w)
4
       end
5
6 end
7 for each edge (u, v) \in E do
       if d[v] > d[u] + w(u, v) then
8
      return FALSE // G has a negative-wt cycle
9
10
11 end
12 return TRUE // G has no neg-wt cycle reachable frm s
```

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � () ◆

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Time Complexity of Bellman-Ford Algorithm

- ► INITIALIZE-SINGLE-SOURCE takes how much time?
- RELAX takes how much time?
- What is time complexity of relaxation steps (nested loops)?
- What is time complexity of steps to check for negative-weight cycles?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

What is total time complexity?

Correctness of Bellman-Ford Algorithm

- Assume no negative-weight cycles
- Since no cycles appear in SPs, every SP has at most |V| 1 edges
- Then define sets $S_0, S_1, \ldots S_{|V|-1}$:

$$S_k = \{ v \in V : \exists s \stackrel{p}{\rightsquigarrow} v ext{ s.t. } \delta(s,v) = w(p) ext{ and } |p| \leq k \}$$

Loop invariant: After *i*th iteration of outer relaxation loop (Line 1), for all v ∈ S_i, we have d[v] = δ(s, v)

- Can prove via induction
- ▶ Implies that, after |V| 1 iterations, $d[v] = \delta(s, v)$ for all $v \in V = S_{|V|-1}$

Correctness of Bellman-Ford Algorithm (2)

• Let $c = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be neg-weight cycle reachable from s:

$$\sum_{i=1}^k w(v_{i-1},v_i) < 0$$

► If algorithm incorrectly returns TRUE, then (due to Line 8) for all nodes in the cycle (i = 1, 2, ..., k),

$$d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$$

By summing, we get

$$\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

- Since $v_0 = v_k$, $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$
- ► This implies that $0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$, a contradiction

SSSPs in Directed Acyclic Graphs

- Why did Bellman-Ford have to run |V| 1 iterations of edge relaxations?
- > To confirm that SP information fully propagated to all nodes

- What if we knew that, after we relaxed an edge just once, we would be completely done with it?
- ► Can do this if G a dag and we relax edges in correct order (what order?)

Dag-Shortest-Paths(G, w, s)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � () ◆

SSSP dag Example (1)

SSSP dag Example (2)

Time Complexity of SSSP in dag

- Topological sort takes how much time?
- ► INITIALIZE-SINGLE-SOURCE takes how much time?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ► How many calls to RELAX?
- What is total time complexity?

Dijkstra's Algorithm

- Faster than Bellman-Ford
- Requires all edge weights to be nonnegative
- Maintains set S of vertices whose final shortest path weights from s have been determined
 - ▶ Repeatedly select $u \in V \setminus S$ with minimum SP estimate, add u to S, and relax all edges leaving u

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Uses min-priority queue

Dijkstra(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = \emptyset
3 Q = V
4 while Q \neq \emptyset do
      u = \text{EXTRACT-MIN}(Q)
5
   S = S \cup \{u\}
6
    for each v \in Adi[u] do
7
          RELAX(u, v, w)
8
      end
9
10 end
```

Dijkstra's Algorithm Example (1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Dijkstra's Algorithm Example (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Time Complexity of Dijkstra's Algorithm

Using array to implement priority queue,

- ▶ INITIALIZE-SINGLE-SOURCE takes how much time?
- ▶ What is time complexity to create Q?
- ► How many calls to EXTRACT-MIN?
- ▶ What is time complexity of EXTRACT-MIN?
- ▶ How many calls to RELAX?
- What is time complexity of RELAX?
- What is total time complexity?
- Using heap to implement priority queue, what are the answers to the above questions?

When might you choose one queue implementation over another?

Correctness of Dijkstra's Algorithm

- Invariant: At the start of each iteration of the while loop, d[v] = δ(s, v) for all v ∈ S
 - Prove by contradiction (p. 660)
- Since all vertices eventually end up in S, get correctness of the algorithm

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Linear Programming

► Given an m×n matrix A and a size-m vector b and a size-n vector c, find a vector x of n elements that maximizes ∑_{i=1}ⁿ c_ix_i subject to Ax ≤ b

• E.g.
$$c = \begin{bmatrix} 2 & -3 \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 22 \\ 4 \\ -8 \end{bmatrix}$ implies:
maximize $2x_1 - 3x_2$ subject to

$$x_1 + x_2 \le 22$$

 $x_1 - 2x_2 \le 4$
 $x_1 \ge 8$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

• Solution: $x_1 = 16$, $x_2 = 6$

Difference Constraints and Feasibility

- ► Decision version of this problem: No objective function to maximize; simply want to know if there exists a feasible solution, i.e. an x that satisfies Ax ≤ b
- ► Special case is when each row of A has exactly one 1 and one −1, resulting in a set of difference constraints of the form

$$x_j - x_i \leq b_k$$

 Applications: Any application in which a certain amount of time must pass between events (x variables represent times of events) Difference Constraints and Feasibility (2)

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3 \end{bmatrix}$$

Difference Constraints and Feasibility (3)

Is there a setting for x_1, \ldots, x_5 satisfying:

One solution: x = (-5, -3, 0, -1, -4)

Constraint Graphs

- Can represent instances of this problem in a constraint graph
 G = (V, E)
- Define a vertex for each variable, plus one more: If variables are x₁,..., x_n, get V = {v₀, v₁,..., v_n}
- Add a directed edge for each constraint, plus an edge from v₀ to each other vertex:

$$E = \{ (v_i, v_j) : x_j - x_i \le b_k \text{ is a constraint} \} \\ \cup \{ (v_0, v_1), (v_0, v_2), \dots, (v_0, v_n) \}$$

▶ Weight of edge (v_i, v_j) is b_k , weight of (v_0, v_ℓ) is 0 for all $\ell \neq 0$

Constraint Graph Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Solving Feasibility with Bellman-Ford

▶ **Theorem:** Let *G* be the constraint graph for a system of difference constraints. If *G* has a negative-weight cycle, then there is no feasible solution to the system. If *G* has no negative-weight cycle, then a feasible solution is

$$x = [\delta(v_0, v_1), \delta(v_0, v_2), \dots, \delta(v_0, v_n)]$$

- ► For any edge $(v_i, v_j) \in E$, $\delta(v_0, v_j) \le \delta(v_0, v_i) + w(v_i, v_j) \Rightarrow \delta(v_0, v_j) \delta(v_0, v_i) \le w(v_i, v_j)$
- If there is a negative-weight cycle c = ⟨v_i, v_{i+1},..., v_k⟩, then there is a system of inequalities x_{i+1} x_i ≤ w(v_i, v_{i+1}), x_{i+2} x_{i+1} ≤ w(v_{i+1}, v_{i+2}), ..., x_k x_{k-1} ≤ w(v_{k-1}, v_k). Summing both sides gives 0 ≤ w(c) < 0, implying that a negative-weight cycle indicates no solution</p>
- Can solve this with Bellman-Ford in time $O(n^2 + nm)$