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Introduction

I Graphs are abstract data types that are applicable to numerous problems
I Can capture entities, relationships between them, the degree of the

relationship, etc.

I This chapter covers basics in graph theory, including representation, and
algorithms for basic graph-theoretic problems

I We’ll build on these later this semester

Types of Graphs

I A (simple, or undirected) graph G = (V ,E ) consists of V , a
nonempty set of vertices and E a set of unordered pairs of distinct
vertices called edges
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V={A,B,C,D,E}

E={ (A,D),(A,E),(B,D),

        (B,E),(C,D),(C,E)}

Types of Graphs (2)

I A directed graph (digraph) G = (V ,E ) consists of V , a nonempty set
of vertices and E a set of ordered pairs of distinct vertices called edges

Types of Graphs (3)

I A weighted graph is an undirected or directed graph with the additional
property that each edge e has associated with it a real number w(e)
called its weight
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Representations of Graphs

I Two common ways of representing a graph: Adjacency list and
adjacency matrix

I Let G = (V ,E ) be a graph with n vertices and m edges



Adjacency List

I For each vertex v 2 V , store a list of vertices adjacent to v

I For weighted graphs, add information to each node

I How much is space required for storage?
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Adjacency Matrix

I Use an n⇥ n matrix M, where M(i , j) = 1 if (i , j) is an edge, 0 otherwise

I If G weighted, store weights in the matrix, using 1 for non-edges

I How much is space required for storage?
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e 0  1  1  1  0
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Breadth-First Search (BFS)

I Given a graph G = (V ,E ) (directed or undirected) and a source node
s 2 V , BFS systematically visits every vertex that is reachable from s

I Uses a queue data structure to search in a breadth-first manner

I Creates a structure called a BFS tree such that for each vertex v 2 V ,
the distance (number of edges) from s to v in tree is a shortest path in G

I Initialize each node’s color to white

I As a node is visited, color it to gray () in queue), then black ()
finished)

BFS(G , s)

1 for each vertex u 2 V \ {s} do

2 color [u] = white

3 d [u] = 1
4 ⇡[u] = nil

5 end

6 color [s] = gray

7 d [s] = 0

8 ⇡[s] = nil

9 Q = ;
10 Enqueue(Q, s)

11 while Q 6= ; do

12 u = Dequeue(Q)

13 for each v 2 Adj [u] do
14 if color [v ] == white then

15 color [v ] = gray

16 d [v ] = d [u] + 1

17 ⇡[v ] = u

18 Enqueue(Q, v)

19

20 end

21 color [u] = black

22 end

BFS Example BFS Example (2)



BFS Properties

I What is the running time?
I Hint: How many times will a node be enqueued?

I After the end of the algorithm, d [v ] = shortest distance from s to v

) Solves unweighted shortest paths
I Can print the path from s to v by recursively following ⇡[v ], ⇡[⇡[v ]], etc.

I If d [v ] == 1, then v not reachable from s

) Solves reachability

Depth-First Search (DFS)

I Another graph traversal algorithm

I Unlike BFS, this one follows a path as deep as possible before
backtracking

I Where BFS is “queue-like,” DFS is “stack-like”

I Tracks both “discovery time” and “finishing time” of each node, which
will come in handy later

DFS(G )

1 for each vertex u 2 V do

2 color [u] = white

3 ⇡[u] = nil

4 end

5 time = 0

6 for each vertex u 2 V do

7 if color [u] == white then

8 DFS-Visit(u)

9

10 end

DFS-Visit(u)

1 color [u] = gray

2 time = time + 1

3 d [u] = time

4 for each v 2 Adj [u] do
5 if color [v ] == white then

6 ⇡[v ] = u

7 DFS-Visit(v)

8

9 end

10 color [u] = black

11 f [u] = time = time + 1

DFS Example DFS Example (2)



DFS Properties

I Time complexity same as BFS: ⇥(|V |+ |E |)
I Vertex u is a proper descendant of vertex v in the DF tree i↵

d [v ] < d [u] < f [u] < f [v ]
) Parenthesis structure: If one prints “(u” when discovering u and “u)”

when finishing u, then printed text will be a well-formed parenthesized
sentence

DFS Properties (2)

I Classification of edges into groups
I A tree edge is one in the depth-first forest
I A back edge (u, v) connects a vertex u to its ancestor v in the DF tree

(includes self-loops)
I A forward edge is a nontree edge connecting a node to one of its DF tree

descendants
I A cross edge goes between non-ancestral edges within a DF tree or

between DF trees
I See labels in DFS example

I Example use of this property: A graph has a cycle i↵ DFS discovers a
back edge (application: deadlock detection)

I When DFS first explores an edge (u, v), look at v ’s color:
I

color [v ] == white implies tree edge
I

color [v ] == gray implies back edge
I

color [v ] == black implies forward or cross edge

Application: Topological Sort

A directed acyclic graph (dag) can represent precedences: an edge (x , y)
implies that event/activity x must occur before y

Application: Topological Sort (2)

A topological sort of a dag G is an linear ordering of its vertices such that if
G contains an edge (u, v), then u appears before v in the ordering

Topological Sort Algorithm

1. Call DFS algorithm on dag G

2. As each vertex is finished, insert it to the front of a linked list

3. Return the linked list of vertices

I Thus topological sort is a descending sort of vertices based on DFS
finishing times

I Why does it work?
I When a node is finished, it has no unexplored outgoing edges; i.e. all its

descendant nodes are already finished and inserted at later spot in final
sort

Application: Strongly Connected Components

Given a directed graph G = (V ,E ), a strongly connected component

(SCC) of G is a maximal set of vertices C ✓ V such that for every pair of
vertices u, v 2 C u is reachable from v and v is reachable from u

What are the SCCs of the above graph?



Transpose Graph

I Our algorithm for finding SCCs of G depends on the transpose of G ,

denoted G

T

I
G

T is simply G with edges reversed

I Fact: GT and G have same SCCs. Why?

SCC Algorithm

1. Call DFS algorithm on G

2. Compute G

T

3. Call DFS algorithm on G

T, looping through vertices in order of
decreasing finishing times from first DFS call

4. Each DFS tree in second DFS run is an SCC in G

SCC Algorithm Example

After first round of DFS:

Which node is first one to be visited in second DFS?

SCC Algorithm Example (2)

After second round of DFS:

SCC Algorithm Analysis

I What is its time complexity?
I How does it work?

1. Let x be node with highest finishing time in first DFS

2. In G

T, x ’s component C has no edges to any other component (Lemma
22.14), so the second DFS’s tree edges define exactly x ’s component

3. Now let x 0 be the next node explored in a new component C 0

4. The only edges from C

0 to another component are to nodes in C , so the
DFS tree edges define exactly the component for x 0

5. And so on...


