Introduction

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 02 — Sorting Lower Bound (Section 8.1)

Stephen Scott

(Adapted from Vinodchandran N. Variyam)

- Impossibility of algorithms: There are some problems that cannot be solved
 - We'll visit this throughout the semester, especially with NP-completeness
 Today's example: there does not exist a general-purpose
 - (comparison-based) algorithm to sort n elements in time $o(n \log n)$
 - Will show this by proving an Ω(n log n) lower bound on comparison-based sorting

sscott@cse.unl.edu

・ロト (四) (注) (注) (注) (注) (こ)

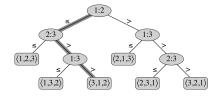
Comparison-Based Sorting Algorithms

- What is a comparison-based sorting algorithm?
 - The sorted order it determines is based only on comparisons between the input elements
 - E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort
- What is not a comparison-based sorting algorithm?
 - The sorted order it determines is based on additional information, e.g., bounds on the range of input values
 - ► E.g., Counting Sort, Radix Sort

Decision Trees

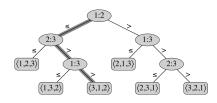
- A decision tree is a full binary tree that represents comparisions between elements performed by a particular sorting algorithm operating on a certain-sized input (*n* elements)
- Key point: a tree represents algorithm's behavior on *all possible inputs* of size *n*
- Each internal node represents one comparison made by algorithm
 - Each node labeled as i : j, which represents comparison $A[i] \le A[j]$
 - If, in the particular input, it is the case that A[i] ≤ A[j], then control flow moves to left child, otherwise to the right child
 - Each leaf represents a possible output of the algorithm, which is a permutation of the input
 - All permutations must be in the tree in order for algorithm to work properly

Example for Insertion Sort



- If n = 3, Insertion Sort first compares A[1] to A[2]
- If $A[1] \leq A[2]$, then compare A[2] to A[3]
- ▶ If *A*[2] > *A*[3], then compare *A*[1] to *A*[3]
- If $A[1] \leq A[3]$, then sorted order is A[1], A[3], A[2]

Example for Insertion Sort (2)



- ▶ Example: *A* = [7, 8, 4]
- First compare 7 to 8, then 8 to 4, then 7 to 4
- Output permutation is (3, 1, 2), which implies sorted order is 4, 7, 8

Proof of Lower Bound

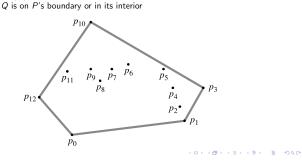
- Length of path from root to output leaf is number of comparisons made by algorithm on that input
- Worst-case number of comparisons is length of longest path (= height h)
- Number of leaves in tree is n!
- A binary tree of height h has at most 2^h leaves
- Thus we have $2^h \ge n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- Take base-2 logs of both sides to get

 $h \geq \lg \sqrt{2\pi} + (1/2) \lg n + n \lg n - n \lg e = \Omega(n \log n)$

- \Rightarrow ${\rm Every}$ comparison-based sorting algorithm has an input that forces it to make $\Omega(n\log n)$ comparisons
- \Rightarrow Mergesort and Heapsort are asymptotically optimal

Another Lower Bound: Convex Hull

- Can use the lower bound on sorting to get a lower bound on the convex hull problem:
 - Given a set $Q \in \{p_1, p_2, \dots, p_n\}$ of n points, each from \mathbb{R}^2 , output CH(Q), which is the smallest convex polygon P such that each point from



Another Lower Bound: Convex Hull (cont'd)

- ▶ We will *reduce* the problem of sorting to that of finding a convex hull
- I.e., given any instance of the sorting problem A = {x₁,...,x_n}, we will transform it to an instance of convex hull such that the time complexity of the new algorithm sorting will be no more than that of convex hull
 ⇒ If convex hull could be solved in time o(n log n) then so can sorting
 - ⇒ Since that cannot happen, we know that convex hull is $\Omega(n \log n)$ the reduction transform A to $\Omega = \{(x_1, y_2^2), (x_2, y_2^2)\}$
- ▶ The reduction: transform A to $Q = \{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2)\}$ ⇒ Takes O(n) time
- ► Since the points on Q are on a parabola, all points of Q are on CH(Q)
 ⇒ Can read off the points of CH(Q) in O(n) time
 ⇒ Yields a sorted list of points from (any) A
- Time to sort A is O(n)+ convex hull +O(n)
- If time for convex hull is o(n log n), then sorting is o(n log n)
 - \Rightarrow Convex hull time complexity is $\Omega(n \log n)$

10 · (0) · (0) · (0) · (0) · (0)