
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 01 — Medians and Order Statistics (Chapter 9)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu


Introduction

I Given an array A of n distinct numbers, the ith order statistic of A is
its ith smallest element

I i = 1 ⇒ minimum
I i = n ⇒ maximum
I i = b(n + 1)/2c ⇒ (lower) median

I E.g. if A = [8, 5, 3, 10, 4, 12, 6] then min = 3, max = 12, median = 6,
3rd order stat = 5

I Problem: Given array A of n elements and a number i ∈ {1, . . . , n},
find the ith order statistic of A

I There is an obvious solution to this problem. What is it? What is its
time complexity?

I Can we do better? What if we only focus on i = 1 or i = n?



Minimum(A)

1 small = A[1]

2 for i = 2 to n do
3 if small > A[i ] then
4 small = A[i ]

5

6 end

7 return small



Efficiency of Minimum(A)

I Loop is executed n − 1 times, each with one comparison

⇒ Total n − 1 comparisons

I Can we do better?
I Lower Bound: Any algorithm finding minimum of n elements will need

at least n − 1 comparisons
I Proof of this comes from fact that no element of A can be considered for

elimination as the minimum until it’s been compared at least once



Correctness of Minimum(A)

I Observe that the algorithm always maintains the invariant that at the
end of each loop iteration, small holds the minimum of A[1 · · · i ]

I Easily shown by induction

I Correctness follows by observing that i == n before return statement



Simultaneous Minimum and Maximum

I Given array A with n elements, find both its minimum and maximum

I What is the obvious algorithm? What is its (non-asymptotic) time
complexity?

I Can we do better?



MinAndMax(A, n)

1 large = max(A[1],A[2])

2 small = min(A[1],A[2])

3 for i = 2 to bn/2c do
4 large = max(large,max(A[2i − 1],A[2i ]))

5 small = min(small ,min(A[2i − 1],A[2i ]))

6 end

7 if n is odd then
8 large = max(large,A[n])

9 small = min(small ,A[n])

10 return (large, small)



Explanation of MinAndMax

I Idea: For each pair of values examined in the loop, compare them
directly

I For each such pair, compare the smaller one to small and the larger one
to large

I Example: A = [8, 5, 3, 10, 4, 12, 6]



Efficiency of MinAndMax

I How many comparisons does MinAndMax make?

I Initialization on Lines 1 and 2 requires only one comparison

I Each iteration through the loop requires one comparison between
A[2i − 1] and A[2i ] and then one comparison to each of large and small ,
for a total of three

I Lines 8 and 9 require one comparison each

I Total is at most 1 + 3(bn/2c − 1) + 2 ≤ 3bn/2c, which is better than
2n − 3 for finding minimum and maximum separately



Selection of the ith Smallest Value

I Now to the general problem: Given A and i , return the ith smallest value
in A

I Obvious solution is sort and return ith element

I Time complexity is Θ(n log n)

I Can we do better?



Selection of the ith Smallest Value (2)

I New algorithm: Divide and conquer strategy
I Idea: Somehow discard a constant fraction of the current array after

spending only linear time
I If we do that, we’ll get a better time complexity
I More on this later

I Which fraction do we discard?



Select(A, p, r , i)

1 if p == r then
2 return A[p]

3 q = Partition(A, p, r) // Like Partition in Quicksort

4 k = q − p + 1 // Size of A[p · · · q]
5 if i == k then
6 return A[q] // Pivot value is the answer

7 else if i < k then
8 return Select(A, p, q − 1, i) // Answer is in left subarray

9 else
10 return Select(A, q + 1, r , i − k) // Answer is in right subarray

11

Returns ith smallest element from A[p · · · r ]



What is Select Doing?

I Like in Quicksort, Select first calls Partition, which chooses a pivot
element q, then reorders A to put all elements < A[q] to the left of
A[q] and all elements > A[q] to the right of A[q]

I E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is
A′ = [1, 4, 2, 3, 5, 7, 8, 6]

I If A[q] is the element we seek, then return it

I If sought element is in left subarray, then recursively search it, and ignore
right subarray

I If sought element is in right subarray, then recursively search it, and
ignore left subarray



Partition(A, p, r)

1 x = ChoosePivotElement(A, p, r) // Returns index of pivot

2 exchange A[x] with A[r ]

3 i = p − 1

4 for j = p to r − 1 do
5 if A[j] ≤ A[r ] then
6 i = i + 1

7 exchange A[i ] with A[j]

8

9 end

10 exchange A[i + 1] with A[r ]

11 return i + 1

Chooses a pivot element and partitions A[p · · · r ] around it



Partitioning the Array: Example (Fig 7.1)

Compare each element A[j] to x (= 4) and swap with A[i ] if A[j] ≤ x



Choosing a Pivot Element

I Choice of pivot element is critical to low time complexity

I Why?

I What is the best choice of pivot element to partition A[p · · · r ]?



Choosing a Pivot Element (2)

I Want to pivot on an element that it as close as possible to being the
median

I Of course, we don’t know what that is

I Will do median of medians approach to select pivot element



Median of Medians

I Given (sub)array A of n elements, partition A into m = bn/5c groups of
5 elements each, and at most one other group with the remaining n
mod 5 elements

I Make an array A′ = [x1, x2, . . . , xdn/5e], where xi is median of group i ,
found by sorting (in constant time) group i

I Call Select(A′, 1, dn/5e, b(dn/5e+ 1)/2c) and use the returned element
as the pivot



Example

Split into teams, and work this example on the board: Find the 4th smallest
element of A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]
Show results for each step of Select, Partition, and ChoosePivotElement



Time Complexity

I Key to time complexity analysis is lower bounding the fraction of
elements discarded at each recursive call to Select

I On next slide, medians and median (x) of medians are marked, arrows
indicate what is guaranteed to be greater than what

I Since x is less than at least half of the other medians (ignoring group
with < 5 elements and x ’s group) and each of those medians is less than
2 elements, we get that the number of elements x is less than is at least

3

(⌈
1

2

⌈n
5

⌉⌉
− 2

)
≥ 3n

10
− 6 ≥ n/4 (if n ≥ 120)

I Similar argument shows that at least 3n/10− 6 ≥ n/4 elements are less
than x

I Thus, if n ≥ 120, each recursive call to Select is on at most 3n/4
elements



Time Complexity (2)



Time Complexity (3)

I Now can develop a recurrence describing Select’s time complexity

I Let T (n) represent total time for Select to run on input of size n

I Choosing a pivot element takes time O(n) to split into size-5 groups and
time T (n/5) to recursively find the median of medians

I Once pivot element chosen, partitioning n elements takes O(n) time

I Recursive call to Select takes time at most T (3n/4)

I Thus we get
T (n) ≤ T (n/5) + T (3n/4) + O(n)

I Can express as T (αn) + T (βn) + O(n) for α = 1/5 and β = 3/4

I Theorem: For recurrences of the form T (αn) + T (βn) + O(n) for
α + β < 1, T (n) = O(n)

I Thus Select has time complexity O(n)



Proof of Theorem

Top T (n) takes O(n) time (= cn for some constant c). Then calls to T (αn) and

T (βn), which take a total of (α + β)cn time, and so on.

Summing these infinitely yields (since α + β < 1)

cn(1 + (α + β) + (α + β)2 + · · · ) =
cn

1− (α + β)
= c ′n = O(n)



Master Method

I Another useful tool for analyzing recurrences
I Theorem: Let a ≥ 1 and b > 1 be constants, let f (n) be a function,

and let T (n) be defined as T (n) = aT (n/b) + f (n). Then T (n) is
bounded as follows.

1. If f (n) = O(nlogb a−ε) for constant ε > 0, then T (n) = Θ(nlogb a)
2. If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)
3. If f (n) = Ω(nlogb a+ε) for constant ε > 0, and if af (n/b) ≤ cf (n) for

constant c < 1 and sufficiently large n, then T (n) = Θ(f (n))

I E.g. for Select, can apply theorem on T (n) < 2T (3n/4) + O(n) (note
the slack introduced) with a = 2, b = 4/3, ε = 1.4 and get

T (n) = O
(
nlog4/3 2

)
= O

(
n2.41

)
⇒ Not as tight for this recurrence


	Introduction
	Finding Minimum and Maximum
	Selection of Arbitrary Order Statistic
	Algorithm Overview
	Algorithm Pseudocode
	Example
	Time Complexity
	Master Theorem


