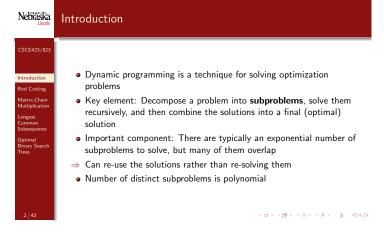
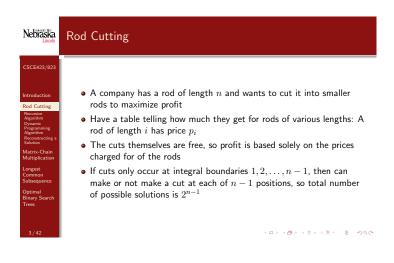
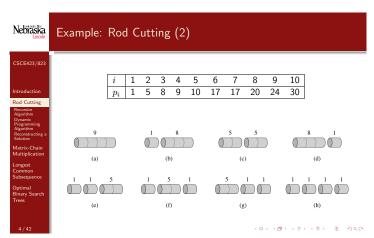
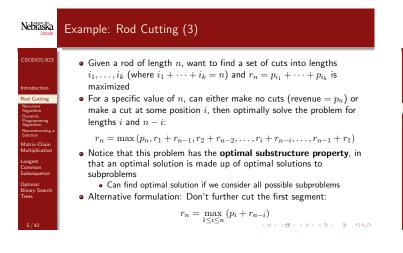
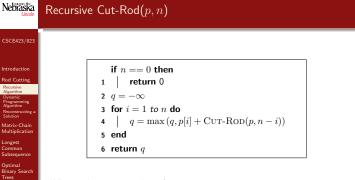
Computer Science & Engineering 423/823 Introduction Rod Cutting Matrice-Chain Multiplication Longest Common Subsequence Optimal Silvay Search Trees Stephen Scott (Adapted from Vinodchandran N. Variyam)











What is the time complexity?

Nebřáska

Time Complexity

ullet Let T(n) be number of calls to $\operatorname{Cut-Rod}$

• Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

- \bullet Why exponential? $\mathrm{Cut\text{-}Rod}$ exploits the optimal substructure property, but repeats work on these subproblems
- ullet E.g. if the first call is for n=4, then there will be:
 - 1 call to CUT-ROD(4)
 - 1 call to CUT-ROD(3)
 - 2 calls to Cut-Rod(2)
 - 4 calls to Cut-Rod(1)
 - 8 calls to Cut-Rod(0)

Nebraska

Time Complexity (2)

Recursion Tree for n=4(0)€ 2000

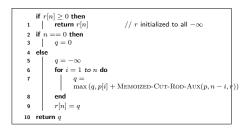
Nebraska

Dynamic Programming Algorithm

- Can save time dramatically by remembering results from prior calls • Two general approaches:
 - Top-down with memoization: Run the recursive algorithm as defined earlier, but before recursive call, check to see if the calculation has already been done and memoized
 - Bottom-up: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones
- Typically have the same asymptotic running time

Nebraska

Memoized-Cut-Rod-Aux(p, n, r)



Nebraska

Bottom-Up-Cut-Rod(p, n)

Allocate $r[0 \dots n]$ r[0] = 0for j = 1 to n do $\quad \text{for } i=1 \ \ \text{to} \ j \ \ \text{do}$

r[j]=q9 return r[n]

First solves for n=0, then for n=1 in terms of r[0], then for n=2 in terms of r[0] and $r[1]\/$ etc. 4 m h 4 **d** h 4 E h 4 E h E + 49 4 @

 $q = \max(q, p[i] + r[j - i])$

Nebraska

Time Complexity

Subproblem graph for $n=4\,$

Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$ 4 D > 4 B > 4 E > 4 E > E + 9 4 @

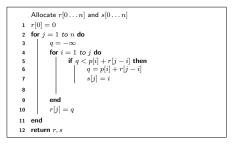
Nebraska

Reconstructing a Solution

- If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem
- \bullet Will add a second array s, which keeps track of the optimal size of the first piece cut in each subproblem

Nebraska

Extended-Bottom-Up-Cut-Rod(p, n)



4 D > 4 B > 4 E > 4 E > E + 4 9 Q C

Nebraska

Print-Cut-Rod-Solution(p, n)

 $(r,s) = {\tt Extended\text{-}Bottom\text{-}Up\text{-}Cut\text{-}Rod}(p,n)$ while $n>0\,\operatorname{do}$ print s[n]n = n - s[n]

2 3 5 4 6 0 5 8 10 13 17 18 22 30 Example: r[i]1 25 2 $s[i] \mid 0$ 1 3 2 2 6 1 2 3 10

If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments of sizes 1 and 6

Nebraska

Matrix-Chain Multiplication

Matrix-Chain

- ullet Given a chain of matrices $\langle A_1,\ldots,A_n \rangle$, goal is to compute their product $A_1 \cdots A_n$
- This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- Can cause dramatic changes in number of operations required
- ullet Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires pqr steps and yields a $p \times r$ matrix for future multiplications
- ullet E.g. Let A_1 be 10×100 , A_2 be 100×5 , and A_3 be 5×50
 - $\bigcirc \hspace{0.1in} \text{Computing } ((A_1A_2)A_3) \text{ requires } 10 \cdot 100 \cdot 5 = 5000 \text{ steps to compute}$ (A_1A_2) (yielding a 10×5), and then $10 \cdot 5 \cdot 50 = 2500$ steps to finish, for a total of 7500
 - ② Computing $(A_1(A_2A_3))$ requires $100 \cdot 5 \cdot 50 = 25000$ steps to compute (A_2A_3) (yielding a 100×50), and then $10 \cdot 100 \cdot 50 = 50000$ steps to finish, for a total of 75000

Nebraska

Matrix-Chain Multiplication (2)

- The matrix-chain multiplication problem is to take a chain $\langle A_1, \ldots, A_n \rangle$ of n matrices, where matrix i has dimension $p_{i-1} \times p_i$, and fully parenthesize the product $A_1\cdots A_n$ so that the number of scalar multiplications is minimized
- Brute force solution is infeasible, since its time complexity is $\Omega \left(4^{n}/n^{3/2} \right)$
- Will follow 4-step procedure for dynamic programming:
 - Characterize the structure of an optimal solution.
 - Recursively define the value of an optimal solution
 - Compute the value of an optimal solution
 - Construct an optimal solution from computed information

40 + 40 + 42 + 42 + 2 + 990

Nebraska

Characterizing the Structure of an Optimal Solution

- ullet Let $A_{i...j}$ be the matrix from the product $A_iA_{i+1}\cdots A_j$
- ullet To compute $A_{i\dots j}$, must split the product and compute $A_{i\dots k}$ and $A_{k+1\ldots j}$ for some integer k, then multiply the two together
- · Cost is the cost of computing each subproduct plus cost of multiplying the two results
- Say that in an optimal parenthesization, the optimal split for $A_i A_{i+1} \cdots A_j$ is at k
- Then in an optimal solution for $A_iA_{i+1}\cdots A_j$, the parenthisization of $A_i\cdots A_k$ is itself optimal for the subchain $A_i\cdots A_k$ (if not, then we could do better for the larger chain)
- Similar argument for $A_{k+1} \cdots A_i$
- \bullet Thus if we make the right choice for k and then optimally solve the subproblems recursively, we'll end up with an optimal solution
- Since we don't know optimal k, we'll try them all

Nebřáska

Recursively Defining the Value of an Optimal Solution

 \bullet Define m[i,j] as minimum number of scalar multiplications needed to compute $A_{i...j}$

- (What entry in the m table will be our final answer?)
- Computing m[i,j]:
 - ① If i=j, then no operations needed and m[i,i]=0 for all i
 - $oldsymbol{a}$ If i < j and we split at k, then optimal number of operations needed is the optimal number for computing $A_{i...k}$ and $A_{k+1...j}$, plus the number to multiply them:

$$m[i,j]=m[i,k]+m[k+1,j]+p_{i-1}p_kp_j$$

 $oldsymbol{\circ}$ Since we don't know k, we'll try all possible values:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j \end{cases}$$

ullet To track the optimal solution itself, define s[i,j] to be the value of kused at each split

Nebraska

Computing the Value of an Optimal Solution

• As with the rod cutting problem, many of the subproblems we've defined will overlap

ullet Exploiting overlap allows us to solve only $\Theta(n^2)$ problems (one problem for each (i, j) pair), as opposed to exponential

• We'll do a bottom-up implementation, based on chain length

• Chains of length 1 are trivially solved (m[i, i] = 0 for all i)

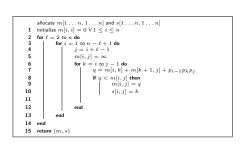
ullet Then solve chains of length 2, 3, etc., up to length n

• Linear time to solve each problem, quadratic number of problems, yields $O(n^3)$ total time

10 + 10 + 12 + 12 + 2 + 900

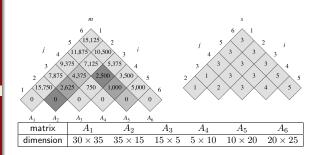
Nebraska

Matrix-Chain-Order(p, n)



Nebraska

Computing the Value of an Optimal Solution (3)



Nebraska

Constructing an Optimal Solution from Computed Information

ullet Cost of optimal parenthesization is stored in m[1,n]

ullet First split in optimal parenthesization is between s[1,n] and

 \bullet Descending recursively, next splits are between s[1,s[1,n]] and s[1,s[1,n]]+1 for left side and between s[s[1,n]+1,n] and s[s[1,n]+1,n]+1 for right side

and so on...

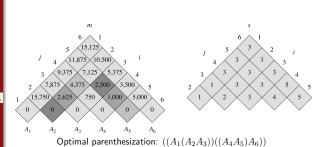
Nebraska

Print-Optimal-Parens(s, i, j)

if i == i then print "A" i 2 else 3 Print-Optimal-Parens(s, i, s[i, j])4 5 ${\tt Print-Optimal-Parens}(s,s[i,j]+1,j)$ 6 print ")"

Nebřaska

Constructing an Optimal Solution from Computed Information (3)



10 10 10 12 12 12 12 1 2 900

Nebraska

Example of How Subproblems Overlap

Entire subtrees overlap: 4.4 1..1 2..2 3..4 4..4 1..1 11 3 3 2.3 3..3 4..4 2..2 3..3

See Section 15.3 for more on optimal substructure and overlapping

10 + 10 + 12 + 12 + 2 + 900

Nebraska

Longest Common Subsequence

- ullet Sequence $Z=\langle z_1,z_2,\ldots,z_k
 angle$ is a **subsequence** of another sequence $X = \langle x_1, x_2, \dots, x_m
 angle$ if there is a strictly increasing sequence $\langle i_1,\ldots,i_k \rangle$ of indices of X such that for all $j=1,\ldots,k$, $x_{i_j}=z_j$
- ullet I.e. as one reads through Z, one can find a match to each symbol of Z in X, in order (though not necessarily contiguous)
- ullet E.g. $Z=\langle B,C,D,B \rangle$ is a subsequence of $X=\langle A,B,C,B,D,A,B\rangle$ since $z_1=x_2,\,z_2=x_3,\,z_3=x_5,$ and $z_4 = x_7$
- ullet Z is a **common subsequence** of X and Y if it is a subsequence of both
- The goal of the longest common subsequence problem is to find a maximum-length common subsequence (LCS) of sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$

Nebraska

Characterizing the Structure of an Optimal Solution

- ullet Given sequence $X=\langle x_1,\ldots,x_m \rangle$, the ith **prefix** of X is $X_i = \langle x_1, \dots, x_i \rangle$
- Theorem If $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$ have LCS $Z = \langle z_1, \dots, z_k \rangle$, then
 - - If $z_k \neq x_m$, can lengthen $Z_i \Rightarrow$ contradiction
 - ullet If Z_{k-1} not LCS of X_{m-1} and Y_{n-1} , then a longer CS of X_{m-1} and ${\cal Y}_{n-1}$ could have x_m appended to it to get CS of ${\cal X}$ and ${\cal Y}$ that is longer than $Z_* \Rightarrow$ contradiction
 - ② If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - \bullet If $z_k \neq x_m$, then Z is a CS of X_{m-1} and Y. Any CS of X_{m-1} and Ythat is longer than Z would also be a longer CS for X and Y , \Rightarrow contradiction
 - \bullet If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

allocate $b[1\dots m,1\dots n]$ and $c[0\dots m,0\dots n]$ initialize c[i,0]=0 and c[0,j]=0 $\forall\,0\leq i\leq m$ and $0\leq j\leq n$

• Similar argument to (2)

10 + 10 + 12 + 12 + 2 + 900

Nebraska

Recursively Defining the Value of an Optimal Solution

• The theorem implies the kinds of subproblems that we'll investigate to find LCS of $X=\langle x_1,\ldots,x_m\rangle$ and $Y=\langle y_1,\ldots,y_n\rangle$

ullet If $x_m=y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m $(=y_n)$ to it

 \bullet If $x_m \neq y_n$, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one

• Let $c[i,j] = \text{length of LCS of } X_i \text{ and } Y_j$

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max{(c[i,j-1], c[i-1,j])} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{array} \right.$$

Nebraska

LCS-Length(X, Y, m, n)

What is the time complexity?

10 11 12

15 16 return (c, b)

4 m + 4 m + 4 m + 4 m + 2 m + 9 q G

Nebřáska Computing the Value of an Optimal Solution (2) $X = \langle A, B, C, B, D, A, B \rangle, Y = \langle B, D, C, A, B, A \rangle$

4 B

DA

Constructing an Optimal Solution from Computed Nebraska Information

ullet Length of LCS is stored in c[m,n]

ullet To print LCS, start at b[m,n] and follow arrows until in row or column 0

ullet If in cell (i,j) on this path, when $x_i=y_j$ (i.e. when arrow is " \nwarrow "), print x_i as part of the LCS

• This will print LCS backwards

10 + 10 + 12 + 12 + 2 + 900

Nebraska

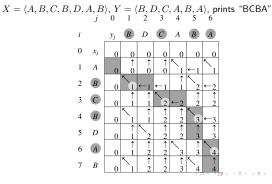
$\mathsf{Print}\text{-}\mathsf{LCS}(b,X,i,j)$

 $\quad \text{if } i == 0 \text{ or } j == 0 \text{ then} \\$ return $_{\mathbf{2}}$ if b[i,j]== " \nwarrow " then PRINT-LCS(b, X, i-1, j-1)print x_i ${\rm {\tiny 5}}\ \ {\rm else}\ {\rm if}\ b[i,j] ==\ ``\uparrow"\ {\rm then}$ PRINT-LCS(b, X, i-1, j)7 else Print-LCS(b, X, i, j - 1)

What is the time complexity?

Nebraska

Constructing an Optimal Solution from Computed Information (3)



Nebraska

Optimal Binary Search Trees

• Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time

ullet Given a sequence $K=\langle k_1,\ldots,k_n
angle$ of n distinct keys in sorted order

 \bullet Key k_i has probability p_i that it will be sought on a particular search ullet To handle searches for values not in K, have n+1 dummy keys

 d_0, d_1, \ldots, d_n to serve as the tree's leaves ullet Dummy key d_i will be reached with probability q_i

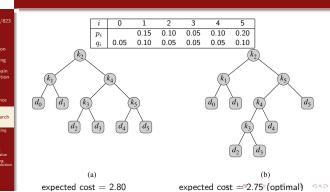
ullet If $\operatorname{depth}_T(k_i)$ is distance from root of k_i in tree T, then expected search cost of T is

 $1 + \sum_{i=1}^{n} p_i \operatorname{depth}_T(k_i) + \sum_{i=0}^{n} q_i \operatorname{depth}_T(d_i)$

• An optimal binary search tree is one with minimum expected

Nebraska

Optimal Binary Search Trees (2)



Nebraska

Characterizing the Structure of an Optimal Solution

CSCE423/823

Introduction
Rod Cutting
Matrix-Chain
Multiplication
Longest
Common
Subsequence

Characterizing
Structure
Recursive
Definition
Computing
Optimal Value
Constructing
Optimal Solution

ullet Observation: Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i,\dots,k_j and have leaves d_{i-1},\dots,d_j

ullet Thus, if an optimal BST T has a subtree T' over keys k_i,\ldots,k_j , then T' is optimal for the subproblem consisting of only the keys k_i,\ldots,k_j

- If T' weren't optimal, then a lower-cost subtree could replace T' in T, \Rightarrow contradiction
- \bullet Given keys k_i,\dots,k_j , say that its optimal BST roots at k_r for some $i\leq r\leq j$
- Thus if we make right choice for k_r and optimally solve the problem for k_i,\ldots,k_{r-1} (with dummy keys d_{i-1},\ldots,d_{r-1}) and the problem for k_{r+1},\ldots,k_j (with dummy keys d_r,\ldots,d_j), we'll end up with an optimal solution
- ullet Since we don't know optimal k_r , we'll try them all

Nebraska

Recursively Defining the Value of an Optimal Solution

CF423/82

Introduction
Rod Cutting
Matrix-Chain
Multiplication

Subsequence
Optimal
Binary Search
Trees
Characterizing

Recursive Definition Computing Optimal Value Constructing Optimal Solution

38 / 42

 \bullet Define e[i,j] as the expected cost of searching an optimal BST built on keys k_i,\dots,k_j

- \bullet If j=i-1, then there is only the dummy key $d_{i-1},$ so $e[i,i-1]=q_{i-1}$
- \bullet If $j\geq i,$ then choose root k_r from k_i,\dots,k_j and optimally solve subproblems k_i,\dots,k_{r-1} and k_{r+1},\dots,k_j
- ullet When combining the optimal trees from subproblems and making them children of k_r , we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- Define $w(i,j) = \sum_{\ell=i}^j p_\ell + \sum_{\ell=i-1}^j q_\ell$ as the sum of probabilities of the nodes in the subtree built on k_i,\ldots,k_j , and get

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

Nebraska

Recursively Defining the Value of an Optimal Solution (2)

°SCF423/823

Introduction
Rod Cutting
Matrix-Chain
Multiplication
Longest
Common
Subsequence
Optimal
Binary Search

Optimal
Binary Search
Trees
Characterizing
Structure
Recursive
Definition
Computing

Optimal Value Constructing Optimal Solution Note that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

- \bullet Thus we can condense the equation to e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)
- ullet Finally, since we don't know what k_r should be, we try them all:

$$e[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{array} \right.$$

 \bullet Will also maintain table root[i,j]= index r for which k_r is root of an optimal BST on keys k_i,\dots,k_j

Nebraska

Optimal-BST(p, q, n)

CSCE423/82

Rod Cutting
Matrix-Chain
Multiplication
Longest
Common
Subsequence
Optimal
Binary Search
Trees
Characterizing
Structure

Definition

Computing

Optimal Value

Constructing

Optimal Solution

 $\begin{aligned} & \text{allocate } e[1\dots n+1,0\dots n], \ w[1\dots n+1,0\dots n], \ \text{and} \\ & root[1\dots n,1\dots n] \\ & \text{look} i = e[i,i-1] = w[i,i-1] = q_{i-1} \ \forall \ 1 \leq i \leq n+1 \end{aligned}$ $\begin{aligned} & 1 & \text{initialize } e[i,i-1] = w[i,i-1] = q_{i-1} \ \forall \ 1 \leq i \leq n+1 \end{aligned}$ $\begin{aligned} & 2 & \text{for } \ell = 1 \text{ to } n \text{ do} \\ & 4 & \text{j} & \text{if } i = 1 \text{ to } n - \ell + 1 \text{ do} \\ & 4 & \text{j} = i + \ell - 1 \\ & e[i,j] = \infty \\ & 6 & \text{w}[i,j] = \infty \\ & 6 & \text{w}[i,j] = w[i,j-1] + p_j + q_j \\ & \text{for } r = i \text{ to } j \text{ do} \\ & 8 & \text{j} & \text{if } t < e[i,j] + hen \\ & 10 & \text{if } t < e[i,j] \text{ then} \\ & 11 & \text{end} \end{aligned}$ $\begin{aligned} & 1 & \text{if } t < e[i,j] \text{ then} \\ & e[i,j] = t \\ & \text{root}[i,j] = r \end{aligned}$ $\begin{aligned} & 1 & \text{look} \end{aligned}$ $\begin{aligned} & 1 & \text{look} \\ & 1 & \text{look} \end{aligned}$

What is the time complexity?

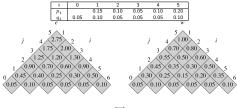
ロト 4回ト 4 E ト 4 E ト 9 Q

Nebraska

Computing the Value of an Optimal Solution (2)

Introduction Rod Cutting Matrix-Chain Multiplication Longest Common Subsequence Optimal

Characterizing
Structure
Recursive
Definition
Computing
Optimal Value
Constructing
Optimal Soluti



Nebraska

Constructing an Optimal Solution from Computed Information

CSCE423/823

Introduction

Rod Cutting

Matrix-Chain

Multiplication

ongest
ommon
ubsequence
optimal
inary Search
rees
characterizing
structure
Recursive

efinition omputing optimal Value onstructing

In-class exercise Write pseudocode

Write pseudocode for the procedure Construct-Optimal-BST(root) that, given the table root, outputs the structure of an optimal binary search tree. It should output text like:

 ${\it k}_2$ is the root

 $\ensuremath{k_1}$ is the left child of $\ensuremath{k_2}$

 d_0 is the left child of k_1

 \emph{d}_1 is the right child of \emph{k}_1

 k_5 is the right child of k_2

 k_4 is the left child of k_5

 k_3 is the left child of k_4

... and so on

42 / 42

4 B > 4 B > 4 E > 4 E > E = 4940