Lincoln

CSCE4: 3
Computer Science & Engineering 423/823
pree Design and Analysis of Algorithms

Lecture 09 — Dynamic Programming (Chapter 15)

Common
Subsequence

Optimal
Binary Search
Trees

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Lincoln

Rod Cutting

Introduction o A company has a rod of length n and wants to cut it into smaller
Rod Cutting rods to maximize profit

Have a table telling how much they get for rods of various lengths: A
rod of length i has price p;

The cuts themselves are free, so profit is based solely on the prices
charged for of the rods

If cuts only occur at integral boundaries 1,2,...,n — 1, then can
make or not make a cut at each of n — 1 positions, so total number
of possible solutions is 271

Optimal
ARy S
Trees

pied Eemple: Rod Cutting (3)

Lincoln

Given a rod of length n, want to find a set of cuts into lengths
i1,...,0 (where 4; + -+ iy =n) and 7, = p;, + -+ i, is
Introduction maximized

Rod Cutting @ For a specific value of n, can either make no cuts (revenue = p,,) or
make a cut at some position 7, then optimally solve the problem for
" lengths ¢ and n —
Tn = MaxX (Pn, 71 + Tne1,72 + Tpe2y o5 7o+ Tpeis ooy To1 +71)
M e @ Notice that this problem has the optimal substructure property, in
i that an optimal solution is made up of optimal solutions to
Subsequence subproblems
G o Can find optimal solution if we consider all possible subproblems
Tree o Alternative formulation: Don't further cut the first segment:

Tn = max (p; + rp—;
n 1o, (pz n z)

Introduction

Lincoln

Dynamic programming is a technique for solving optimization

Rod Cutting problems

Key element: Decompose a problem into subproblems, solve them
recursively, and then combine the solutions into a final (optimal)
iz solution

Subsequence

Optimal o Important component: There are typically an exponential number of
Trow S subproblems to solve, but many of them overlap

= Can re-use the solutions rather than re-solving them

Number of distinct subproblems is polynomial

2/42
ety Example: Rod Cutting (2)
i |1 2 3 4 5 6 7 8 9 10
pi|1 5 8 9 10 17 17 20 24 30
9 1 8 5 5 8 1
. 1)) O e OO
Multiplication @ ® © o
u ce 1 1 5 1 5 1 5 1 1 1 1 1 1
g OO0 OO oo Oooo
Trees
(O] ® (@ (h)

WcERY Recursive Cut-Rod(p, n)

Lincoln

CSCE423/823

Introduction if n == 0 then
Rod Cutting 1 ‘ return 0

Recursive
Algorithm

g=—
for i =1 ton do

‘ ¢ = max (¢, p[i] + CuT-RoD(p,n — 7))
end

o o B W N

Common
Subsequence

return ¢

Optimal

What is the time complexity?

Lincoln

Introduction
Rod Cutting

Recursive
Algorithm

Subsequence

Optimal

Lincoln

Introduction

Rod Cutting

Optimal
ARy S
Trees

9/42

Nebiéska

Lincoln
CSCE423/823

Introduction

Rod Cutting

Programming
Algorithm

Common
sequence

Optimal

Binary Search
Trees

11/42

Time Complexity

@ Let T'(n) be number of calls to CuT-ROD
@ Thus T(0) =1 and, based on the for loop,

n—1
T(n) =1+ T(j)=2"

j=0

@ Why exponential? CuT-ROD exploits the optimal substructure
property, but repeats work on these subproblems
o E.g. if the first call is for n = 4, then there will be:
o 1 call to CuT-RoD(4)
1 call to CuT-RoD(3)
2 calls to CuT-RoD(2)
4 calls to CuT-RoD(1)
8 calls to CuT-RoD(0)

namic Programming Algorithm

o Can save time dramatically by remembering results from prior calls

@ Two general approaches:
@ Top-down with memoization: Run the recursive algorithm as

defined earlier, but before recursive call, check to see if the calculation

has already been done and memoized

@ Bottom-up: Fill in results for “small” subproblems first, then use

these to fill in table for “larger” ones

Typically have the same asymptotic running time

Bottom-Up-Cut-Rod(p, n)

Allocate 7[0...n]

end

1 r[0]=0

2 for j =1 tondo

3 q= -

4 fori=1 toj do

5 | = max (q, pli] + r[j —i])
6 end

7 rlil=q

8

9

return r[n]

First solves for n = 0, then for n =1 in terms of r[0], then for n =2 in

terms of 7[0] and r[1], etc.

Lincoln

Introduction

Rod Cutting

Recursive
Algorithm

Matri
Multiplication

Subsequence
Optimal

Binary Search
Trees

Lincoln
CSCE423/823

Introduction

Matrix-Chain
Multiplication
Longest
Common
Subsequence
Optimal
BinsiviSeach
Trees

Nebiéiska

Lincoln
CSCE423/823

Introduction

Rod Cutti

Dynamic
Programming
Algorithm

Longest
Common
Subsequence

Optimal
Binary Search
Trees

Time Complexity (2)

Recursion Tree for n =4

Memoized-Cut-Rod-Aux(p, n,)

if 7[n] > 0 then
1| return r[n] // r initialized to all —co
2 if n == 0 then
3 q=0
4 else
5 q=—0c0
6 for i =1 ton do
7 q=

max (g, p[i] + MEMOIZED-CUT-ROD-AUX(p, 1 — 4, 7))

8 end
9 r[n] =q
10 return g

Time Complexity

Subproblem graph for n = 4

Both algorithms take linear time to solve for each value of n, so total
time complexity is ©(n?)

Reconstructing a Solution

Lincoln

CSCE4: 3
Introduction
Cutti
o If interested in the set of cuts for an optimal solution as well as the
- revenue it generates, just keep track of the choice made to optimize
S:ﬁ‘e::dmga each subproblem
; ain o Will add a second array s, which keeps track of the optimal size of
Lonmest the first piece cut in each subproblem
ongest

Common
Subsequence

Optimal
Binary Search
Trees

13 /42
Nebiaska Print-Cut-Rod-Solution(p, n)
CSCE423,
[- (r, s) = EXTENDED-BoTTOM-UP-CUT-ROD(p, n)

@ 1 while n > 0 do
Rod Cutting 2 print s[n]
3 n=n-—sn|

8 4 end

SShven "
|\ ain
Multiplication
Lo i 0123 4 5 6 7 8 9 10
S Example: | r[¢ |O 1 5 8 10 13 17 18 22 25 30
Optimal sgjo 1.2 3 2 2 6 1 2 3 10
LAl |f » = 10, optimal solution is no cut; if n = 7, then cut once to get

segments of sizes 1 and 6
15/42

WeetlY Matrix-Chain Multiplication (2)

Lincoln

CSCE423, 3

o The matrix-chain multiplication problem is to take a chain
Introduction (A1, ..., A,) of n matrices, where matrix i has dimension p;_1 X p;,
TG and fully parenthesize the product Aj - - - A, so that the number of
Matrix-Chai T . . e
Multiplication scalar multiplications is minimized

@ Brute force solution is infeasible, since its time complexity is
Definiti QO (4”/77,3/2)
o Will follow 4-step procedure for dynamic programming:
@ Characterize the structure of an optimal solution
Lon, @ Recursively define the value of an optimal solution
© Compute the value of an optimal solution
@ Construct an optimal solution from computed information

Lincoln

Introduction

Rod Cutting

Reconstructing a
Solution

Subsequence

Optimal
Binary Search
Trees

Lincoln

Introduction

Rod Cutting

Subsequence
Optimal
Binary Search

Trees

16 /42

Nebiéiska

Lincoln

CSCE423/823

Introduction

Rod Cutting

Structure

Optimal
Binary Search
Trees

18 /42

Extended-Bottom-Up-Cut-Rod(p, n)

Allocate 7[0...n] and s[0...n]
1 r[0]=0

2 for j =1 tondo

3 q=—00

4 fori=1 to j do

5 if ¢ < pli] + r[j — i] then
6 q=plil+r[j—1i]
7 sljl =i

8
9

end
10 hl=q
11 end

12 returnr, s

Matrix-Chain Multiplication

@ Given a chain of matrices (A;,..., A,), goal is to compute their

product A; --- A,
@ This operation is associative, so can sequence the multiplications in
multiple ways and get the same result
@ Can cause dramatic changes in number of operations required
o Multiplying a p x ¢ matrix by a ¢ x r matrix requires pqr steps and
yields a p x r matrix for future multiplications
o E.g. Let A; be 10 x 100, A2 be 100 x 5, and A3 be 5 x 50
© Computing ((A142)A3) requires 10 - 100 - 5 = 5000 steps to compute
(A1A) (yielding a 10 x 5), and then 10 - 5 - 50 = 2500 steps to finish,
for a total of 7500
@ Computing (A1(A2A3)) requires 100 -5 - 50 = 25000 steps to compute
(A2As3) (yielding a 100 x 50), and then 10 - 100 - 50 = 50000 steps to
finish, for a total of 75000

Characterizing the Structure of an Optimal Solution

Let A;_; be the matrix from the product A;A; 1 --- A;

To compute A;._j, must split the product and compute A;_; and
Apgq1...; for some integer £, then multiply the two together

Cost is the cost of computing each subproduct plus cost of
multiplying the two results

Say that in an optimal parenthesization, the optimal split for
AiAipy - ~AJ‘ is at k

Then in an optimal solution for A;A; 11 --- Aj, the parenthisization of
A; -+ Ay is itself optimal for the subchain A; - -- Ay (if not, then we
could do better for the larger chain)

Similar argument for Ay 1---A;

Thus if we make the right choice for k and then optimally solve the
subproblems recursively, we'll end up with an optimal solution

Since we don't know optimal k, we'll try them all

21 Recursively Defining the Value of an Optimal Solution

SCE o Define mli, j] as minimum number of scalar multiplications needed
to compute A;_;

Introduction o (What entry in the m table will be our final answer?)

Rod Cutting o Computing mli

Matrix-Chain Q If i = j, then no operations needed and m[i,i] = 0 for all i

@ If i < j and we split at &, then optimal number of operations needed
is the optimal number for computing A; _x and Ay, j, plus the

Recursive

EE number to multiply them:

Soam o . .

ot Sotion mli,j] = mli, k] + mlk + 1, j] + pi—1pkp;

b © Since we don't know k, we'll try all possible values:

T miig] =1 © ifi=j

Subsequence EEN mingenes {mli, K]+ mlk + 1, 5] + poaprps} ifi <

Optimal

ey S o To track the optimal solution itself, define s[i, j] to be the value of k
o) used at each split

WeeteY Matrix-Chain-Order(p,)

allocate m[1...n,1...n]and s[1...n,1...7n]
ridiziiuesie 1 initialize m[i,i] =0¥1<i<n
Rod Cutting 2 for£=2tondo
fori=1ton—¢+1do
Matri 4 j=itl—1
Multi 5 mli, j] = oo
6 for k =itoj—1do
7 q = mli, k] + m[k +1,5] + pi—1pkp;
8 if g < mli, j] then
Computing 9 mli,j] =q
Optimal Value 10] =
n 1
12 end
= 13 end
mmon 14 end
Subsequence 15 return (m,s)
Optimal
Binary Search
Tres
21/42

e Constructing an Optimal Solution from Computed

Lincoln

Information

CSCE423/823

Introduction

Rod Cutting Cost of optimal parenthesization is stored in m[1,n]

o
®

First split in optimal parenthesization is between s[1,n] and
e s[l,n]+1

Bt o Descending recursively, next splits are between s[1, s[1,n]] and
,g s[1, s[1,n]] + 1 for left side and between s[s[1,n] + 1,7n] and
e s[s[1,n] + 1,n] + 1 for right side

et @ and so on...

onge:

S

Optimal

Binary Search

Tre

Computing the Value of an Optimal Solution

Lincoln

cscC

Introduction @ As with the rod cutting problem, many of the subproblems we've
Rod Cutting defined will overlap

Matrix-Chain o Exploiting overlap allows us to solve only ©(n?) problems (one

Multiplication

problem for each (i, j) pair), as opposed to exponential

o We'll do a bottom-up implementation, based on chain length
@ Chains of length 1 are trivially solved (m/[i,i] = 0 for all 7)
@ Then solve chains of length 2, 3, etc., up to length n
@ Linear time to solve each problem, quadratic number of problems,
Subsequence yields O(n?) total time
Optimal
Trea S
20/42

WectY Computing the Value of an Optimal Solution (3)

CSCE423/823

Introduction

Rod Cutting

Computing
Optimal Value

A, A A Ay As Ag

Longest

Camon matrix A A, A Ay As Ag
Subsequence
‘ dimension | 30 X35 35x15 15x5 5x10 10x20 20x 25

Optimal
Binary Search
Trees

et Print-Optimal-Parens(s, i,)

Lincoln

CSCE423/823

Introduction
Rod Cutting J then
1 ‘ print “A";
2 else
3 print “("
4 PRINT-OPTIMAL-PARENS(S, @
E 5 PRINT-OPTIMAL-PARENS(, s, j] + 1, j)
onstructing
Optimal Soltion 6 print u)vv
7

Subsequence

Optimal
Binary Search
Trees

N Constructing an Optimal Solution from Computed Nelsiik

Information (3) Example of How Subproblems Overlap

Lincoln Lincoln

Entire subtrees overlap:

1.4
Introduction Introduction
Rod Cutting 0 Rod Cutting

4

3 1.1 2. 1.2 3.4 1.3 4.4
: PANNAY WA
. 2.2 3.4 1 2.2 33 44 1.1 2.3 1.2 3.3

2.3 @44 .

Constructing
Optimal Solution

Overalapping
Subproblems

[

Subsequence 3.3 4.4 222 3.3 220 iR

[

Subsequence 5 3 s
optimal Optimal parenthesization: ((A1(A2A43))((A445)A4s)) Optimal See Section 15.3 for more on optimal substructure and overlapping
; ; subproblems
25 /42

Nebiaska ngest Common Subsequence WEvelal Characterizing the Structure of an Optimal Solution
CSCE423,
@ Sequence Z = (z1, z9,. .., z) is a subsequence of another sequence o Given sequence X = (x1,...,%n), the ith prefix of X is

X = (x1,%2,...,2m,) if there is a strictly increasing sequence Xi = (z1,...,25)
Introduction (i1, .- ,ix) of indices of X such that for all j =1,....k, x;; = z; gzt o Theorem If X = (21,...,2,) and Y = (y1,...,y,) have LCS
‘p cutine o l.e. as one reads through Z, one can find a match to each symbol of T‘d (“:h'"E Z ={z1,...,2), then
Multiplication Z in X, in order (though not necessarily contiguous) Multiplication Q Ty =yn = 2 = Tm = yn and Z_y is LCS of Xy _y and ¥,y
= _ . o If z; # @, can lengthen Z, = contradiction
go;}fmon o Eg Z=(B,C,D,B)isa sybsequence of o If Z_1 not LCS of X,,—1 and Y,,_1, then a longer CS of X,,,_; and
— X =(A,B,C,B,D, A, B) since 21 = 13, 22 = x3, 23 = T5, and ra— Y,—1 could have z,,, appended to it to get CS of X and Y that is

24 = T7 SEn longer than Z, = contradiction
G e Z is a common subsequence of X and Y if it is a subsequence of Q If @i # yn, then 2 # Ty implies that Z is an LCS of Xy and ¥

both o If 2z # @, then Z is a CS of X,,—1 and Y. Any CS of X,,,—1 and Y

. that is longer than Z would also be a longer CS for X and Y, =

e . @ The goal of the longest common subsequence problem is to find e . contradiction
UL a maximum-length common subsequence (LCS) of sequences Trees @ If ., # yn, then 2 # y, implies that Z is an LCS of X and Y,,_;

X = <951; T2y 773m> and Y = <y1; Y2, ;yn> e Similar argument to (2)

27 /42
NEeEleY Recursively Defining the Value of an Optimal Solution Nebiaska LCS-Length(X,Y,m,n)
CSCE423, 3 CSCE423/823
@ The theorem implies the kinds of subproblems that we'll investigate allocate b1...m, 1...n] and c[0...m,0...n]
[E— to find LCS of X = (z1,...,2m) and Y = (y1, ..., yn) [E— y itatze cli, 0) = 0and cl0,] =0VO ST mand 055 <
e i o If 2, = yn, then find LCS of X,,_1 and Y,,_; and append z, e i : o L then
N . Ma 5 c =cli—1,7—1 1
Multiplication (=wn) toit ; : : AT
=y o If &, # yn, then find LCS of X and Y;_; and find LCS of X,,,_; : cheitel
Subsequence and Y and identify the longest one : 13 | blis 3]
e o Let c[i, j] = length of LCS of X; and Y; 4 n ‘ el
Sotmal Volue 13
& 0 ifi=0o0rj=0 C] 14 end
P . . e - 15 end

Optimal C[%J] = C[Z -1,5- 1] +1 ifi,j >0and z; = Yj Optimal 16 return (c, b)
oy i max (c[i,j — 1], ¢c[i —1,7]) if4,5 >0 and z; # y; oy i

What is the time complexity?

Computing the Value of an Optimal Solution (2)

Constructing an Optimal Solution from Computed

Lincoln Lincoln |nf0rmat|0n
¢ X =(A,B,C,B,D,A,B),Y =(B,D,C, A, B, A) CocEazs/e23
j 0 1 2 3 4 5 6
Introduction i y B D © A B @A Introduction
Rod Cutting 0 x Rod Cutting o Length of LCS is stored in c[m,n]
Matrix-Chain ! 0 0 0 0 0 0 0 Matrix-Chain . PR
Multiplcation oA (T) (T) (T) '\I - '\1 3 e To print LCS, start at b[m,n] and follow arrows until in row or
e B T column 0 , _ _
Subsequenc 0 % ‘—% ‘{1 1 % ‘_% o Ifin cell (i,) on this path, when z; = y; (i.e. when arrow is “< "),
E 3@ o 1| 1| T2)en \2) print x; as part of the LCS
Eomputin NPT is will pri
Computig 4 @B ol Ml 1l 2| 2B5]es § @ This will print LCS backwards
Gotimal TN ot Gotimal Soltion
- S P ol 1l 2l 28l 3 o
Sinary Search 6 @ o\ 1IN Binary Search
Trees 0 1 2 2 3 3 4 Trees
N NP
7B ol 1l 2 2] 3[4
31/42
. N Constructing an Optimal Solution from Computed
R Print-LCS(b, Nebrada e P P
Information (3)
CSCE42 X =(A,B,C,B,D,A,B),Y =(B,D,C, A, B, A), prints “BCBA”
jo0 1 2 3 4 56
Introduction if i == 0 or j = 0 then Introduction i yy B D © A B @A
Rod Cutting Rod Cutting
.rhtr'\(rCh::n ! .‘ ,re.turn) " M: r'\(rCh::n 0 i 0 0 0 0 0 0 0
Multiplication 2 if b[lq.]] == "N" then Multiplication 1 A ot TN N
Longest 3 PRINT-LCS(b, X,i — 1,5 — 1) Longest 0 ,\0 g 0 %. A REE
g’ " 4 print z; < 2 @ Of &1 1 \2 2
(, pintr . T
s s else if bfi, j] T then . CIENEI 6 B
D 6 PrRINT-LCS(b, X,i —1,7) N 1 TR
Gorial v P 4 B —
LR A 7 else PRINT-LCS(b, X,4,j — 1) Sl 0| 1| 1] 2| 2] 3|3
Gptimal Solution Gptimal Solution 5 p TN T T
e e 0l 11 21 2] 2731 3
Binary Search What is the time complexity7 Binary Search 6 @ T TIN 1IN
Trees : Trees 0] 1 2| 2| 3| 3| 4
N AN R
» T B ol u] 2] 2| 3|4
\Evetal Optimal Binary Search Trees Nebidska Optimal Binary Search Trees (2)

R o Goal is to construct binary search trees such that most frequently e i 0 1 2 3 4 5
sought values are near the root, thus minimizing expected search time i 015 010 005 010 0.20
. e . ¢ | 0.05 010 005 0.05 0.05 0.10
Introduction o Given a sequence K = (ki,...,ky) of n distinct keys in sorted order Introduction

3
o
]
°

Rod Cutting

Key k; has probability p; that it will be sought on a particular search
N @ To handle searches for values not in K, have n + 1 dummy keys

Longest do,dy, . ..,dy to serve as the tree's leaves

S e Dummy key d; will be reached with probability ¢;

oEEE I o If depthyp(k;) is distance from root of k; in tree T, then expected CEIIN

Trees search cost of T is Trees

sﬂm & n n

B, 1+ psdepthy(k;) + Y g; depthy(d;)

0 i=1 i=0

o e An optimal binary search tree is one with minimum expected @ ®)
25 /40 search cost

expected cost = 2.80 expected cost =72.75 (optimal)

Characterizing the Structure of an Optimal Solution Nevetel Recursively Defining the Value of an Optimal Solution

Lincoln

CSCE4: 3 H . H H H H CSCEA42:
o Observation: Since K is sorted and dum'my key§ |nterspel3r5ed n o Define eli, j] as the expected cost of searching an optimal BST built
order, any subtree of a BST must contain keys in a contiguous range on keys k; ks
Viy e ey Vg
Introduction ki, ..., k; and have leaves d;_1,...,d; Introduction . .
Rod Cutting @ Thus, if an optimal BST T has a subtree 7" over keys k;, ..., kj, Rod Cutting ° If? =t 1, then there is only the dummy key d;_1, so
i@t then T” is optimal for the subproblem consisting of only the keys Yheietn eli,i—1] = gi1
Multiplication kiy ... kj Multiplication @ If j >4, then choose root k, from k;,...,k; and optimally solve
Chgest. o If 7' weren't optimal, then a lower-cost subtree could replace 7" in T, Chgest. subproblems k;, ..., k1 and ky11,..., k;
Subsequence = contradiction Subsequence
e . . . e @ When combining the optimal trees from subproblems and making
Optimal o Given keys k;, ..., k;j, say that its optimal BST roots at k, for some Optimal . . . L
Binary Search i<r<j By e them children of k;., we increase their depth by 1, which increases the
T o Thus if we make right choice for k, and optimally solve the problem cost of each by the sum of the probabilities of its nodes

Define w(i, j) = > 9_; pe + 25:171 q¢ as the sum of probabilities of
the nodes in the subtree built on ;, ..., k;, and get

Definition
=

for ki, ..., kr—1 (with dummy keys d;_1,...,d,—1) and the problem
for kry1,...,k; (with dummy keys d,.. ..., d;), we'll end up with an
optimal solution

@ Since we don't know optimal k., we'll try them all

C
Optimal

eli,j] = pr + (efi,r = 1] +w(i,r — 1)) + (e[r + 1, 7] + w(r + 1, 7))

37/42
et Recursively Defining the Value of an Optimal Solution (2) ety Optimal-BST(p, ¢, n)
CSCE423,
o Note that T Ly O et L0l ond
Introduction w(L]) — w(i., r— 1) +p+ 70(7‘ +1,]) Introduction ; ":'rt‘;h:le[:a ;;OIJ =wli,i-1]=¢ 1 V1<i<n+1
Rod Cutting . Rod Cutting 3 fori=1ton—¢+1do
D i @ Thus we can condense the equation to Vi@t 4 j=it+e—1
i ion P . . T Multiplication 5 eli o
i elisg] = eliyr 1]+ elr + 1,] + (i,) — : i PRI
0 o Finally, since we don't know what k; should be, we try them all: : o e)t e+ 1,.) 4 wiis 3]
9 if t < e[i, j] then
e 10 eli] =t
gf,:,\, ‘Se:m:h [i]] _ qi—1 if j=i-1 g&:m ‘Se:m:h 1 rm:[L jJ=r
Trees ’ ming<,<;{efi,r — 1] +e[r+1,7] +w(i,j)} ifi<j " : 12
- e 13 end
Recursive 14 end
e Will also maintain table root[i, j] = index r for which k; is root of an s 15 end
¢ optimal BST on keys ki, ..., k; a = 16 _retum (e, root)
a2 What is the time complexity?
_— . . . N Constructing an Optimal Solution from Computed
Nebidska Computing the Value of an Optimal Solution (2) Nebidska .
Information
CSCE423/823 [0 T 5 3 7 5] CSCE423/823
‘ Pi 015 010 005 010 020 ‘
qi 005 010 005 005 005 0.10 In-class exercise
° W
(settEsen Introduction Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST (root)
Rod Cutting Rod Cutting that, given the table root, outputs the structure of an optimal binary
; Matr search tree. It should output text like:
Multiplication Multi .
L ;l . ko is the root
Enln on Enlr;"m" k1 is the left child of ks
Subsequence Subsequence . .
Ontimal dy is the left child of k;
ptimal . . .
Binary Search ry Sea dy is the right child of k;
Cha ks is the right child of ks
k4 is the left child of k5
Sl v 0 ks is the left child of ky4
o otion ... and so on

41/42

