

CSCE423/823

Introduction Proofs of NPC Problems Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- So far, we have focused on problems with "efficient" algorithms
- \bullet I.e. problems with algorithms that run in polynomial time: ${\cal O}(n^c)$ for some constant c
 - $\bullet\,$ Side note: We call it efficient even if c is large, since it is likely that another, even more efficient, algorithm exists
- But, for some problems, the fastest known algorithms require time that is **superpolynomial**
 - Includes sub-exponential time (e.g. 2^{n^{1/3}}), exponential time (e.g. 2ⁿ), doubly exponential time (e.g. 2^{2ⁿ}), etc.
 - There are even problems that cannot be solved in *any* amount of time (e.g. the "halting problem")

P vs. NP

CSCE423/823

- Introduction Efficiency P vs. NP NP-
- Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- \bullet Our focus will be on the ${\bf complexity\ classes\ called\ P\ and\ NP}$
- Centers on the notion of a **Turing machine** (TM), which is a finite state machine with an infinitely long tape for storage
 - Anything a computer can do, a TM can do, and vice-versa
 - More on this in CSCE 428/828 and CSCE 424/824
- P = "deterministic polynomial time" = the set of problems that can be solved by a deterministic TM (deterministic algorithm) in polynomial time
- NP = "nondeterministic polynomial time" = the set of problems that can be solved by a nondeterministic TM in polynomial time
 - Can loosely think of a nondeterministic TM as one that can explore many, many possible paths of computation at once
 - Equivalently, NP is the set of problems whose solutions, if given, can be **verified** in polynomial time

P vs. NP Example

CSCE423/823

Introduction Efficiency P. vs. NP

NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- Problem HAM-CYCLE: Does a graph G = (V, E) contain a **hamiltonian cycle**, i.e. a simple cycle that visits every vertex in V exactly once?
 - This problem is in NP, since if we were given a specific G plus the answer to the question plus a **certificate**, we can verify a "yes" answer in polynomial time using the certificate
 - What would be an appropriate certificate?
 - Not known if HAM-CYCLE $\in \mathsf{P}$

P vs. NP Example (2)

CSCE423/823

- Introduction Efficiency P vs. NP
- NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- Problem EULER: Does a directed graph G = (V, E) contain an **Euler tour**, i.e. a cycle that visits every edge in E exactly once and can visit vertices multiple times?
 - This problem is in P, since we can answer the question in polynomial time by checking if each vertex's in-degree equals its out-degree
 - Does that mean that the problem is also in NP? If so, what is the certificate?

NP-Completeness

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- Any problem in P is also in NP, since if we can efficiently solve the problem, we get the poly-time verification for free
 ⇒ P ⊂ NP
- $\bullet\,$ Not known if $\mathsf{P}\subset\,\mathsf{NP},$ i.e. unknown if there a problem in NP that's not in $\mathsf{P}\,$
- A subset of the problems in NP is the set of **NP-complete** (NPC) problems
 - Every problem in NPC is at least as hard as all others in NP
 - These problems are believed to be intractable (no efficient algorithm), but not yet proven to be so
 - $\bullet\,$ If any NPC problem is in P, then P = NP and life is glorious $\,\ddot{-}\,$

Proving NP-Completeness

CSCE423/823

Nehraska

Introduction Efficiency P vs. NP NP-Completeness

Proving NP-Completeness Reductions

CIRCUIT-SAT Other NPC Problems

- Thus, if we prove that a problem is NPC, we can tell our boss that we cannot find an efficient algorithm and should take a different approach
 - E.g. approximation algorithm, heuristic approach
- How do we prove that a problem A is NPC?
 - **()** Prove that $A \in \mathsf{NP}$ by finding certificate
 - Show that A is as hard as any other NP problem by showing that if we can efficiently solve A then we can efficiently solve all problems in NP
- First step is usually easy, but second looks difficult
- Fortunately, part of the work has been done for us ...

Reductions

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- We will use the idea of a **reduction** of one problem to another to prove how hard it is
- A reduction takes an instance of one problem A and transforms it to an instance of another problem B in such a way that a solution to the instance of B yields a solution to the instance of A
- Example 1: How did we solve the bipartite matching problem?
- Example 2: How did we solve the topological sort problem?
- Time complexity of reduction-based algorithm for A is the time for the reduction to B plus the time to solve the instance of B

Decision Problems

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Other NPC

- Before we go further into reductions, we simplify our lives by focusing on **decision problems**
- In a decision problem, the only output of an algorithm is an answer "yes" or "no"
- I.e. we're not asked for a shortest path or a hamiltonian cycle, etc.
- Not as restrictive as it may seem: Rather than asking for the weight of a shortest path from *i* to *j*, just ask if there exists a path from *i* to *j* with weight at most *k*
- Such decision versions of *optimization problems* are no harder than the original optimization problem (why?), so if we show the decision version is hard, then so is the optimization version
- Decision versions are especially convenient when thinking in terms of languages and the Turing machines that accept/reject them

Reductions (2)

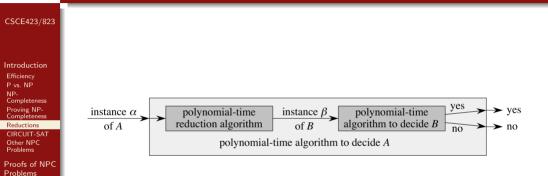
CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Other NPC

Proofs of NPC Problems

- What is a reduction in the NPC sense?
- Start with two problems A and B, and we want to show that problem B is at least as hard as A
- Will reduce A to B via a polynomial-time reduction by transforming any instance α of A to some instance β of B such that
 - The transformation must take polynomial time (since we're talking about hardness in the sense of efficient vs. inefficient algorithms)
 The answer for α is "ves" if and only if the answer for β is "ves"
- If such a reduction exists, then B is at least as hard as A since if an efficient algorithm exists for B, we can solve any instance of A in polynomial time
- Notation: A ≤_P B, which reads as "A is no harder to solve than B, modulo polynomial time reductions"

Reductions (3)



Reductions (4)

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- But if we want to prove that a problem *B* is NPC, do we have to reduce to it *every* problem in NP?
- No we don't:
 - $\bullet\,$ If another problem A is known to be NPC, then we know that any problem in NP reduces to it
 - If we reduce A to B, then any problem in NP can reduce to B via its reduction to A followed by A's reduction to B
 - We then can call B an $\ensuremath{\mathsf{NP}}\xspace$ hard problem, which is NPC if it is also in NP
 - Still need our first NPC problem to use as a basis for our reductions

CIRCUIT-SAT

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC

Problems

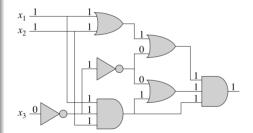
Proofs of NPC Problems

- Our first NPC problem: CIRCUIT-SAT
- An instance is a boolean combinational circuit (no feedback, no memory)
- Question: Is there a **satisfying assignment**, i.e. an assignment of inputs to the circuit that satisfies it (makes its output 1)?

CIRCUIT-SAT (2)

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

Proofs of NPC Problems



Satisfiable

Unsatisfiable

<ロト < 回 ト < 三 ト < 三 ト 三 の < ○</p>

CIRCUIT-SAT (3)

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT

Other NPC Problems

Proofs of NPC Problems

- To prove CIRCUIT-SAT to be NPC, need to show:
 - OIRCUIT-SAT ∈ NP; what is its certificate that we can confirm in polynomial time?
 - Provide the second s
- We'll skip the NP-hardness proof, save to say that it leverages the existence of an algorithm that verifies certificates for some NP problem

Other NPC Problems

CSCE423/823

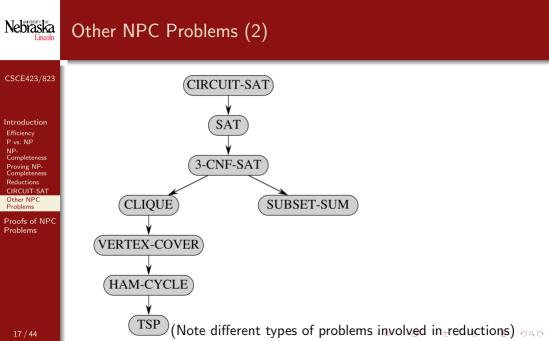
Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

Proofs of NPC Problems

- We'll use the fact that CIRCUIT-SAT is NPC to prove that these other problems are as well:
 - SAT: Does boolean formula ϕ have a satisfying assignment?
 - 3-CNF-SAT: Does 3-CNF formula ϕ have a satisfying assignment?
 - CLIQUE: Does graph G have a clique (complete subgraph) of k vertices?
 - VERTEX-COVER: Does graph G have a vertex cover (set of vertices that touches all edges) of k vertices?
 - HAM-CYCLE: Does graph G have a hamiltonian cycle?
 - TSP: Does complete, weighted graph G have a hamiltonian cycle of total weight ≤ k?

<ロト 4月 > 4日 > 4日 > 日 9000

- SUBSET-SUM: Is there a subset S^\prime of finite set S of integers that sum to exactly a specific target value t?
- Many more in Garey & Johnson's book, with proofs



NPC Problem: Formula Satisfiability (SAT)

CSCE423/823

Introduction

Proofs of NPC Problems

SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- Given: A boolean formula ϕ consisting of
 - **1** n boolean variables x_1, \ldots, x_n
 - 2 *m* boolean connectives from \land , \lor , \neg , \rightarrow , and \leftrightarrow
 - e Parentheses
- Question: Is there an assignment of boolean values to x_1,\ldots,x_n to make ϕ evaluate to 1?

• E.g.: $\phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$ has satisfying assignment $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$ since

$$\phi = ((0 \to 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$$

= $(1 \lor \neg ((1 \leftrightarrow 1) \lor 1)) \land 1$
= $(1 \lor \neg (1 \lor 1)) \land 1$
= $(1 \lor 0) \land 1$

SAT is NPC

CSCE423/823

- Introduction
- Proofs of NPC Problems 3-CNF-SAT CLIQUE VERTEX-

SUBSET_SUM

- SAT is in NP: φ's satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- SAT is NP-hard: Will show CIRCUIT-SAT \leq_P SAT by reducing from CIRCUIT-SAT to SAT
- In reduction, need to map *any* instance (circuit) C of CIRCUIT-SAT to *some* instance (formula) ϕ of SAT such that C has a satisfying assignment if and only if ϕ does
- Further, the time to do the mapping must be polynomial in the size of the circuit, implying that ϕ 's representation must be polynomially sized

SAT is NPC (2)

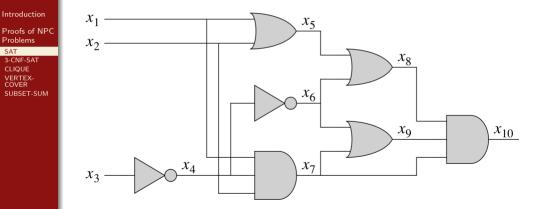
CSCE423/823

Problems

3-CNF-SAT CLIQUE COVER

SAT

Define a variable in ϕ for each wire in C:



SAT is NPC (3)

¢

CSCE423/823

Introduction

SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

Proofs of NPC Problems Then define a clause of φ for each gate that defines the function for that gate:

$$\begin{split} \phi &= x_{10} \quad \land \quad (x_4 \leftrightarrow \neg x_3) \\ & \land \quad (x_5 \leftrightarrow (x_1 \lor x_2)) \\ & \land \quad (x_6 \leftrightarrow \neg x_4) \\ & \land \quad (x_7 \leftrightarrow (x_1 \land x_2 \land x_4)) \\ & \land \quad (x_8 \leftrightarrow (x_5 \lor x_6)) \\ & \land \quad (x_9 \leftrightarrow (x_6 \lor x_7)) \\ & \land \quad (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)) \end{split}$$

SAT is NPC (4)

CSCE423/823

Introduction

- Size of ϕ is polynomial in size of C (number of gates and wires)
- \Rightarrow If C has a satisfying assignment, then the final output of the circuit is 1 and the value on each internal wire matches the output of the gate that feeds it
 - $\bullet~$ Thus, $\phi~$ evaluates to 1~
- $\Leftarrow \mbox{ If } \phi \mbox{ has a satisfying assignment, then each of } \phi's \mbox{ clauses is satisfied, } which means that each of C's gate's output matches its function applied to its inputs, and the final output is 1$
 - Since satisfying assignment for $C\Rightarrow$ satisfying assignment for ϕ and vice-versa, we get C has a satisfying assignment if and only if ϕ does

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM • Given: A boolean formula that is in 3-conjunctive normal form (3-CNF), which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

 $(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_5 \vee x_1)$

• Question: Is there an assignment of boolean values to x_1, \ldots, x_n to make the formula evaluate to 1?

3-CNF-SAT is NPC

CSCE423/823

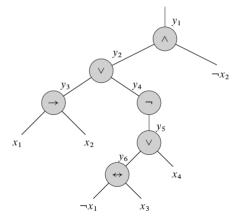
Introduction

- 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- 3-CNF-SAT is NP-hard: Will show SAT \leq_P 3-CNF-SAT
- Again, need to map any instance ϕ of SAT to some instance $\phi^{\prime\prime\prime}$ of 3-CNF-SAT
 - 0 Parenthesize ϕ and build its *parse tree*, which can be viewed as a circuit
 - @ Assign variables to wires in this circuit, as with previous reduction, yielding $\phi',$ a conjunction of clauses
 - 0 Use the truth table of each clause ϕ'_i to get its DNF, then convert it to CNF ϕ''_i
 - **4** Add auxiliary variables to each ϕ_i'' to get three literals in it, yielding ϕ_i'''
 - **(9)** Final CNF formula is $\phi''' = \bigwedge_i \phi'''_i$

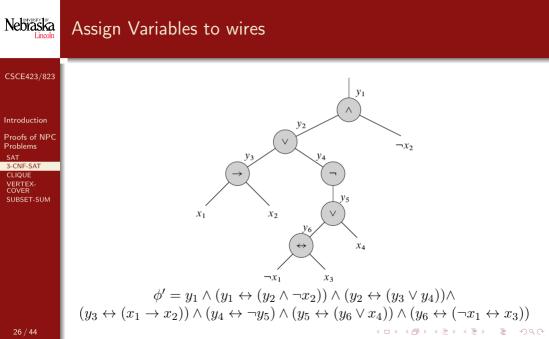
Building the Parse Tree

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

Introduction Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM



Might need to parenthesize ϕ to put at most two children per node $(\Box) \to (\overline{\phi}) \to (\overline{z}) \to (\overline{z})$



Convert Each Clause to CNF

CSCE423/823

Introduction Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM • Consider first clause $\phi'_1 = (y_1 \leftrightarrow (y_2 \land \neg x_2))$ • Truth table:

y_1	y_2	x_2	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

• Can now directly read off DNF of negation:

 $\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$

• And use DeMorgan's Law to convert it to CNF:

$$\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor \neg y_2 \lor \neg y_2) \land (y_1 \lor y_2 \lor \neg y_2) \land (y_1 \lor y_2 \lor y_2) \land (y_1 \lor$$

Add Auxillary Variables

CSCE423/823

Introduction Proofs of NPC

Problems

3-CNF-SAT

VERTEX

SUBSET_SUM

- Based on our construction, $\phi = \phi'' = \bigwedge_i \phi''_i$, where each ϕ''_i is a CNF formula each with at most three literals per clause
 - But we need to have *exactly* three per clause!
 - Simple fix: For each clause C_i of ϕ'' ,
 - **(**) If C_i has three distinct literals, add it as a clause in ϕ'''
 - If $C_i = (\ell_1 \lor \ell_2)$ for distinct literals ℓ_1 and ℓ_2 , then add to ϕ''' $(\ell_1 \lor \ell_2 \lor p) \land (\ell_1 \lor \ell_2 \lor \neg p)$
 - **3** If $C_i = (\ell)$, then add to ϕ''' $(\ell \lor p \lor q) \land (\ell \lor p \lor \neg q) \land (\ell \lor \neg p \lor q) \land (\ell \lor \neg p \lor \neg q)$
 - p and q are **auxillary variables**, and the combinations in which they're added result in a logically equivalent expression to that of the original clause, regardless of the values of p and q

Proof of Correctness of Reduction

CSCE423/823

Nehraska

- Introduction
- Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- $\bullet~\phi$ has a satisfying assignment iff $\phi^{\prime\prime\prime}$ does
 - $\textcircled{\label{eq:circuit} 0}$ CIRCUIT-SAT reduction to SAT implies satisfiability preserved from ϕ to ϕ'
 - **2** Use of truth tables and DeMorgan's Law ensures ϕ'' equivalent to ϕ'
 - $\textbf{③} \quad \text{Addition of auxillary variables ensures } \phi^{\prime\prime\prime} \text{ equivalent to } \phi^{\prime\prime}$
- \bullet Constructing $\phi^{\prime\prime\prime}$ from ϕ takes polynomial time
 - $\blacksquare \ \phi'$ gets variables from $\phi,$ plus at most one variable and one clause per operator in ϕ
 - Seach clause in ϕ' has at most 3 variables, so each truth table has at most 8 rows, so each clause in ϕ' yields at most 8 clauses in ϕ''
 - 0 Since there are only two auxillary variables, each clause in ϕ'' yields at most 4 in ϕ'''
 - **③** Thus size of ϕ''' is polynomial in size of ϕ , and each step easily done in polynomial time

Nebraska Lincoln

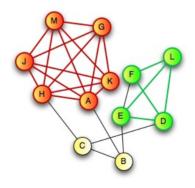
NPC Problem: Clique Finding (CLIQUE)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- $\bullet\,$ Given: An undirected graph G=(V,E) and value k
- Question: Does G contain a clique (complete subgraph) of size k?



Has a clique of size k = 6, but not of size $7_{\text{B}}, 7_{\text{B}}$

CLIQUE is NPC

CSCE423/823

Introduction

- CLIQUE is in NP: A list of vertices in the clique certifies that the answer is "yes" and this can be easily checked in poly time (how?)
- CLIQUE is NP-hard: Will show 3-CNF-SAT ≤_P CLIQUE by mapping any instance φ of 3-CNF-SAT to some instance ⟨G, k⟩ of CLIQUE
 - Seems strange to reduce a boolean formula to a graph, but we will show that ϕ has a satisfying assignment iff G has a clique of size k
 - Caveat: the reduction merely preserves the iff relationship; it does not try to directly solve either problem, nor does it assume it knows what the answer is

The Reduction

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- Let $\phi = C_1 \wedge \dots \wedge C_k$ be a 3-CNF formula with k clauses
- For each clause $C_r = (\ell_1^r \vee \ell_2^r \vee \ell_3^r)$ put vertices v_1^r , v_2^r , and v_3^r into V

- Add edge (v_i^r, v_j^s) to E if:
 - $\ \, { \ \, { 0 } } \ \, r \neq s , \ \, { { i.e. } } \ \, v_i^r \ \, { { and } } \ \, v_j^s \ \, { { are } in } \ \, { { separate triples } }$
 - 2 ℓ_i^r is not the negation of ℓ_j^s
- Obviously can be done in polynomial time

The Reduction (2)

CSCE423/823 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$ Satisfied by $x_2 = 0$, $x_3 = 1$ Introduction $C_1 = x_1 \vee \neg x_2 \vee \neg x_3$ Proofs of NPC Problems $\neg x_2$ x_1 3-CNF-SAT VERTEX-COVER SUBSET-SUM X_1 $\neg x$ $C_2 = \neg x_1 \lor x_2 \lor x_3$ $C_3 = x_1 \lor x_2 \lor x_3$ x_2 x_2 x_3 x_3 = v) < @ 33 / 44

The Reduction (3)

CSCE423/823

- Introduction Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM
- $\Rightarrow~{\rm lf}~\phi$ has a satisfying assignment, then at least one literal in each clause is true
 - \bullet Picking corresponding vertex from a true literal from each clause yields a set V' of k vertices, each in a distinct triple
 - Since each vertex in V' is in a distinct triple and literals that are negations of each other cannot both be true in a satisfying assignment, there is an edge between each pair of vertices in V'
 - V' is a clique of size k
- $\Leftarrow \mbox{ If } G$ has a size- k clique V' , can assign 1 to corresponding literal of each vertex in V'
 - Each vertex in its own triple, so each clause has a literal set to 1

- $\bullet\,$ Will not try to set both a literal and its negation to 1
- Get a satisfying assignment

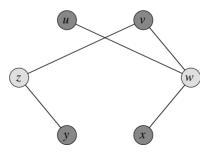
NPC Problem: Vertex Cover Finding (VERTEX-COVER)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- A vertex in a graph is said to **cover** all edges incident to it
- A vertex cover of a graph is a set of vertices that covers all edges in the graph
- Given: An undirected graph G = (V, E) and value k
- Question: Does G contain a vertex cover of size k?



Has a vertex cover of size k = 2, but not of size $1 \in \mathbb{R}$ for k = 2.

VERTEX-COVER is NPC

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies that the answer is "yes" and this can be easily checked in poly time
- VERTEX-COVER is NP-hard: Will show CLIQUE ≤_P
 VERTEX-COVER by mapping *any* instance ⟨G, k⟩ of CLIQUE to some instance ⟨G', k'⟩ of VERTEX-COVER
- Reduction is simple: Given instance $\langle G = (V, E), k \rangle$ of CLIQUE, instance of VERTEX-COVER is $\langle \overline{G}, |V| k \rangle$, where $\overline{G} = (V, \overline{E})$ is G's complement:

$$\overline{E} = \{(u,v): u, v \in V, u \neq v, (u,v) \notin E\}$$

• Easily done in polynomial time

Proof of Correctness

CSCE423/823

Introduction

3-CNF-SAT

VERTEX-

SUBSET_SUM

- \Rightarrow Assume G has a size-k clique $V' \subseteq V$
 - Consider edge $(u, v) \in \overline{E}$
 - If it's in \overline{E} , then $(u, v) \notin E$, so at least one of u and v (which cover (u, v)) is not in V', so at least one of them is in $V \setminus V'$
 - This holds for each edge in $\overline{E},$ so $V\setminus V'$ is a vertex cover of \overline{G} of size |V|-k
- $\Leftarrow \text{ Assume } \overline{G} \text{ has a size-}(|V|-k) \text{ vertex cover } V'$
 - For each $(u,v)\in \overline{E}$, at least one of u and v is in V'
 - By contrapositive, if $u,v\not\in V',$ then $(u,v)\in E$
- Since every pair of nodes in $V\setminus V'$ has an edge between them, $V\setminus V'$ is a clique of size |V|-|V'|=k

NPC Problem: Subset Sum (SUBSET-SUM)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- Given: A finite set S of positive integers and a positive integer ${\bf target}\ t$
- Question: Is there a subset $S' \subseteq S$ whose elements sum to t?
- E.g. $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\}$ and t = 138457 has a solution $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$

SUBSET-SUM is NPC

CSCE423/823

Introduction

- SUBSET-SUM is in NP: The subset S' certifies that the answer is "yes" and this can be easily checked in poly time
- SUBSET-SUM is NP-hard: Will show 3-CNF-SAT ≤_P SUBSET-SUM by mapping *any* instance φ of 3-CNF-SAT to *some* instance ⟨S, t⟩ of SUBSET-SUM
- Make two reasonable assumptions about ϕ :
 - O No clause contains both a variable and its negation
 - 2 Each variable appears in at least one clause

The Reduction

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM

- Let ϕ have k clauses C_1, \ldots, C_k over n variables x_1, \ldots, x_n
- Reduction creates two numbers in S for each variable x_i and two numbers for each clause C_j
- Each number has n + k digits, the most significant n tied to variables and least significant k tied to clauses
 - Target t has a 1 in each digit tied to a variable and a 4 in each digit tied to a clause
 - For each x_i, S contains integers v_i and v'_i, each with a 1 in x_i's digit and 0 for other variables. Put a 1 in C_j's digit for v_i if x_i in C_j, and a 1 in C_j's digit for v'_i if ¬x_i in C_j
 - **③** For each C_j , S contains integers s_j and s'_j , where s_j has a 1 in C_j 's digit and 0 elsewhere, and s'_j has a 2 in C_j 's digit and 0 elsewhere

- Greatest sum of any digit is 6, so no carries when summing integers
- Can be done in polynomial time

The Reduction (2)

CSCE423/823

Introduction

$$C_{1} = (x_{1} \lor \neg x_{2} \lor \neg x_{3}), C_{2} = (\neg x_{1} \lor \neg x_{2} \lor \neg x_{3}), C_{3} = (\neg x_{1} \lor \neg x_{2} \lor x_{3}), C_{4} = (x_{1} \lor x_{2} \lor x_{3})$$

v_1	=	1	0	0	1	0	0	1
ν'_1	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
ν'_2	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν'_3	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s'_1	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s'_3	=	0	0	0	0	0	2	0
S_4	=	0	0	0	0	0	0	1
s'_4	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

$$x_1 = 0, x_2 = 0, x_3 = 1$$

Proof of Correctness

CSCE423/823

Nehraska

Introduction

- \Rightarrow If $x_i=1$ in ϕ 's satisfying assignment, SUBSET-SUM solution S' will have v_i , otherwise v'_i
 - $\bullet\,$ For each variable-based digit, the sum of the elements of S' is 1
 - Since each clause is satisfied, each clause contains at least one literal with the value 1, so each clause-based digit sums to 1, 2, or 3
 - To match each clause-based digit in t, add in the appropriate subset of **slack variables** s_i and s'_i

Proof of Correctness (2)

CSCE423/823

Introduction

- $\Leftarrow \text{ In SUBSET-SUM solution } S', \text{ for each } i = 1, \dots, n, \text{ exactly one of } v_i \text{ and } v'_i \text{ must be in } S', \text{ or sum won't match } t$
 - If $v_i \in S',$ set $x_i = 1$ in satisfying assignment, otherwise we have $v_i' \in S'$ and set $x_i = 0$
 - To get a sum of 4 in clause-based digit C_j , S' must include a v_i or v'_i value that is 1 in that digit (since slack variables sum to at most 3)
 - Thus, if $v_i \in S'$ has a 1 in C_j 's position, then x_i is in C_j and we set $x_i = 1$, so C_j is satisfied (similar argument for $v'_i \in S'$ and setting $x_i = 0$)
 - $\bullet\,$ This holds for all clauses, so ϕ is satisfied

In-Class Exercise

CSCE423/823

Introduction

- OK, everything perfectly clear?
- Want a shot at extra credit?
- Put away your books (keep your notes), split into groups, and get ready for an in-class exercise!