

Nebřaska Introduction

- So far, we have focused on problems with "efficient" algorithms
- ullet I.e. problems with algorithms that run in polynomial time:  $O(n^c)$  for some constant c
  - Side note: We call it efficient even if c is large, since it is likely that another, even more efficient, algorithm exists
- But, for some problems, the fastest known algorithms require time that is  ${\bf superpolynomial}$ 
  - Includes sub-exponential time (e.g.  $2^{n^{1/3}}$ ), exponential time (e.g.  $2^n$ ), doubly exponential time (e.g.  $2^{2^n}$ ), etc.
  - There are even problems that cannot be solved in any amount of time (e.g. the "halting problem")

10 + 10 + 12 + 12 + 2 + 900

### Nebraska

### P vs. NP

• Our focus will be on the complexity classes called P and NP

- Centers on the notion of a Turing machine (TM), which is a finite state machine with an infinitely long tape for storage
  - Anything a computer can do, a TM can do, and vice-versa
  - More on this in CSCE 428/828 and CSCE 424/824
- $\bullet$  P = "deterministic polynomial time" = the set of problems that can be solved by a deterministic TM (deterministic algorithm) in polynomial time
- NP = "nondeterministic polynomial time" = the set of problems that can be solved by a nondeterministic TM in polynomial time
  - Can loosely think of a nondeterministic TM as one that can explore many, many possible paths of computation at once
  - Equivalently, NP is the set of problems whose solutions, if given, can be verified in polynomial time



4 D F 4 B F 4 E F 4 E F 9 Q C



### P vs. NP Example

ullet Problem HAM-CYCLE: Does a graph G=(V,E) contain a hamiltonian cycle, i.e. a simple cycle that visits every vertex in  ${\cal V}$ exactly once?

- ullet This problem is in NP, since if we were given a specific G plus the answer to the question plus a certificate, we can verify a "yes" answer in polynomial time using the certificate
- What would be an appropriate certificate?
- $\bullet \ \, \mathsf{Not} \,\, \mathsf{known} \,\, \mathsf{if} \,\, \mathsf{HAM}\text{-}\mathsf{CYCLE} \in \mathsf{P}$

Nebraska

### P vs. NP Example (2)

- Problem EULER: Does a directed graph  $G=\left(V,E\right)$  contain an **Euler tour**, i.e. a cycle that visits every edge in  ${\cal E}$  exactly once and can visit vertices multiple times?
  - This problem is in P, since we can answer the question in polynomial time by checking if each vertex's in-degree equals its out-degree
  - Does that mean that the problem is also in NP? If so, what is the

### Nebraska

### **NP-Completeness**

- Any problem in P is also in NP, since if we can efficently solve the problem, we get the poly-time verification for free  $\Rightarrow$  P  $\subseteq$  NP
- $\bullet$  Not known if P  $\subset$  NP, i.e. unknown if there a problem in NP that's not in P
- A subset of the problems in NP is the set of NP-complete (NPC) problems
  - Every problem in NPC is at least as hard as all others in NP
  - These problems are believed to be intractable (no efficient algorithm), but not yet proven to be so
  - $\bullet$  If any NPC problem is in P, then P = NP and life is glorious  $\ \ddot{\smile}$

### Nebraska

### **Proving NP-Completeness**

- Thus, if we prove that a problem is NPC, we can tell our boss that we cannot find an efficient algorithm and should take a different approach
  - E.g. approximation algorithm, heuristic approach
- How do we prove that a problem A is NPC?
  - $\textbf{ 9} \ \, \mathsf{Prove that} \,\, A \in \mathsf{NP} \,\, \mathsf{by finding certificate} \,\,$
  - $oldsymbol{0}$  Show that A is as hard as any other NP problem by showing that if we can efficiently solve  ${\cal A}$  then we can efficiently solve all problems in NP
- First step is usually easy, but second looks difficult
- Fortunately, part of the work has been done for us ...

### Nebřaska

### Reductions

• We will use the idea of a reduction of one problem to another to prove how hard it is

- ullet A reduction takes an instance of one problem A and transforms it to an instance of another problem  $\boldsymbol{B}$  in such a way that a solution to the instance of  $\boldsymbol{B}$  yields a solution to the instance of  $\boldsymbol{A}$
- Example 1: How did we solve the bipartite matching problem?
- Example 2: How did we solve the topological sort problem?
- ullet Time complexity of reduction-based algorithm for A is the time for the reduction to  ${\cal B}$  plus the time to solve the instance of  ${\cal B}$

10 + 10 + 12 + 12 + 2 + 900

### Nebraska

### **Decision Problems**

• Before we go further into reductions, we simplify our lives by focusing on decision problems

- In a decision problem, the only output of an algorithm is an answer "yes" or "no"
- I.e. we're not asked for a shortest path or a hamiltonian cycle, etc.
- Not as restrictive as it may seem: Rather than asking for the weight of a shortest path from i to j, just ask if there exists a path from ito j with weight at most k
- Such decision versions of optimization problems are no harder than the original optimization problem (why?), so if we show the decision version is hard, then so is the optimization version
- Decision versions are especially convenient when thinking in terms of languages and the Turing machines that accept/reject them

40 + 40 + 42 + 42 + 2 + 990

### Nebraska

### Reductions (2)

• What is a reduction in the NPC sense?

- ullet Start with two problems A and B, and we want to show that problem  ${\cal B}$  is at least as hard as  ${\cal A}$
- ullet Will reduce A to B via a polynomial-time reduction by transforming any instance  $\alpha$  of A to some instance  $\beta$  of B such that
  - 1 The transformation must take polynomial time (since we're talking about hardness in the sense of efficient vs. inefficient algorithms)
  - $oldsymbol{0}$  The answer for lpha is "yes" if and only if the answer for eta is "yes"
- $\bullet$  If such a reduction exists, then B is at least as hard as A since if an efficient algorithm exists for B, we can solve any instance of A in polynomial time
- Notation:  $A \leq_{\mathbf{P}} B$ , which reads as "A is no harder to solve than B, modulo polynomial time reductions"

### Nebraska

### Reductions (3)

 $\begin{array}{c}
\text{instance } \beta \\
\text{of } B
\end{array}$ polynomial-time algorithm to decide Byes > ves instance  $\alpha$ reduction algorithm polynomial-time algorithm to decide A

### Nebraska

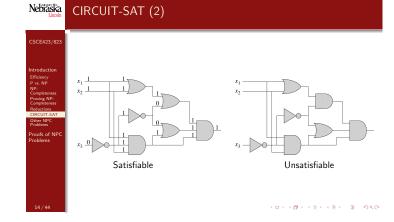
### Reductions (4)

 $\bullet$  But if we want to prove that a problem B is NPC, do we have to reduce to it every problem in NP?

- No we don't:
  - $\bullet$  If another problem A is known to be NPC, then we know that any problem in NP reduces to it
  - $\bullet$  If we reduce A to B, then any problem in NP can reduce to B via its reduction to A followed by A's reduction to B
  - ullet We then can call B an **NP-hard** problem, which is NPC if it is also in
  - Still need our first NPC problem to use as a basis for our reductions

40 + 40 + 42 + 42 + 2 + 290

## CSCE423/823 Introduction Efficiency P. vs. NP Completeness Proving NP Completeness Reduction Outr first NPC problem: CIRCUIT-SAT • An instance is a boolean combinational circuit (no feedback, no memory) • Question: Is there a satisfying assignment, i.e. an assignment of inputs to the circuit that satisfies it (makes its output 1)?



• We'll use the fact that CIRCUIT-SAT is NPC to prove that these

ullet SAT: Does boolean formula  $\phi$  have a satisfying assignment?

 $\bullet$  HAM-CYCLE: Does graph G have a hamiltonian cycle?

ullet 3-CNF-SAT: Does 3-CNF formula  $\phi$  have a satisfying assignment?

 $\bullet$  VERTEX-COVER: Does graph G have a vertex cover (set of vertices

 $\bullet\,$  TSP: Does complete, weighted graph G have a hamiltonian cycle of

 $\bullet$  SUBSET-SUM: Is there a subset  $S^\prime$  of finite set S of integers that

ullet CLIQUE: Does graph G have a clique (complete subgraph) of k

# CIRCUIT-SAT (3) \*\*CSCE423/823 \*\*Introduction \*\*Efficiency Processing Research \*\*Completeness Processing Research \*\*Processing Resea

Nebraska

Other NPC Problems (2)

(CLIQUE)

(VERTEX-COVER)

HAM-CYCLE

(CIRCUIT-SAT)

(SAT)

SUBSET-SUM

(Note different types of problems involved in reductions)

## CSCE423/823 Introduction Efficiency P.vs. NP NP Completeness Reductions GREGUITS AT Decided to the completeness Reductions Proofs of NPC Problems

Other NPC Problems

other problems are as well:

total weight  $\leq k$ ?

that touches all edges) of k vertices?

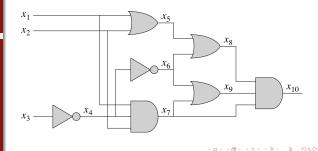
sum to exactly a specific target value t?

• Many more in Garey & Johnson's book, with proofs

Nebraska NPC Problem: Formula Satisfiability (SAT) ullet Given: A boolean formula  $\phi$  consisting of lacktriangleq n boolean variables  $x_1, \dots, x_n$ 2 m boolean connectives from  $\land$ ,  $\lor$ ,  $\neg$ ,  $\rightarrow$ , and  $\leftrightarrow$ Parentheses ullet Question: Is there an assignment of boolean values to  $x_1,\dots,x_n$  to make  $\phi$  evaluate to 1? • E.g.:  $\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$  has satisfying assignment  $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 1$ ,  $x_4 = 1$  since  $\phi \quad = \quad ((0 \to 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$  $= (1 \lor \neg((1 \leftrightarrow 1) \lor 1)) \land 1$  $= (1 \lor \neg (1 \lor 1)) \land 1$  $= (1 \lor 0) \land 1$ = 1 4 D F 4 B F 4 E F 4 E F 9 Q C

### Nebraska SAT is NPC $\bullet$ SAT is in NP: $\phi$ 's satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time $\bullet$ SAT is NP-hard: Will show CIRCUIT-SAT $\leq_P$ SAT by reducing from CIRCUIT-SAT to SAT ullet In reduction, need to map any instance (circuit) C of CIRCUIT-SAT to some instance (formula) $\phi$ of SAT such that C has a satisfying assignment if and only if $\boldsymbol{\phi}$ does • Further, the time to do the mapping must be polynomial in the size of the circuit, implying that $\phi \mbox{'s}$ representation must be polynomially 101 101 121 121 2 900

### Define a variable in $\phi$ for each wire in C: $x_2$



### Nebraska

### SAT is NPC (3)

ullet Then define a clause of  $\phi$  for each gate that defines the function for that gate:

$$\begin{split} \phi = x_{10} & \wedge & (x_4 \leftrightarrow \neg x_3) \\ & \wedge & (x_5 \leftrightarrow (x_1 \lor x_2)) \\ & \wedge & (x_6 \leftrightarrow \neg x_4) \\ & \wedge & (x_7 \leftrightarrow (x_1 \land x_2 \land x_4)) \\ & \wedge & (x_8 \leftrightarrow (x_5 \lor x_6)) \\ & \wedge & (x_9 \leftrightarrow (x_6 \lor x_7)) \\ & \wedge & (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)) \end{split}$$

4 D > 4 B > 4 E > 4 E > E 9 9 0

4 D F 4 B F 4 E F 4 E F 9 Q C

### Nebraska

Nebraska

SAT is NPC (2)

### SAT is NPC (4)

- ullet Size of  $\phi$  is polynomial in size of C (number of gates and wires)
- $\Rightarrow$  If C has a satisfying assignment, then the final output of the circuit is 1 and the value on each internal wire matches the output of the gate that feeds it
  - ullet Thus,  $\phi$  evaluates to 1
- $\Leftarrow$  If  $\phi$  has a satisfying assignment, then each of  $\phi$  's clauses is satisfied, which means that each of C's gate's output matches its function applied to its inputs, and the final output is 1
- $\bullet$  Since satisfying assignment for  $C\Rightarrow$  satisfying assignment for  $\phi$  and vice-versa, we get  ${\cal C}$  has a satisfying assignment if and only if  $\phi$  does

4 D > 4 B > 4 E > 4 E > E 9 9 0

### Nebraska

### NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

• Given: A boolean formula that is in 3-conjunctive normal form (3-CNF), which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

 $(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_5 \vee x_1)$ 

• Question: Is there an assignment of boolean values to  $x_1, \ldots, x_n$  to make the formula evaluate to 1?

Nebraska

### 3-CNF-SAT is NPC

- 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- $\bullet$  3-CNF-SAT is NP-hard: Will show SAT  $\leq_{\mbox{\footnotesize{P}}}$  3-CNF-SAT
- ullet Again, need to map any instance  $\phi$  of SAT to some instance  $\phi'''$  of
  - $\ensuremath{\mathbf 0}$  Parenthesize  $\phi$  and build its  $\ensuremath{\textit{parse tree}},$  which can be viewed as a circuit
  - Assign variables to wires in this circuit, as with previous reduction.
  - yielding  $\phi'$ , a conjunction of clauses • Use the truth table of each clause  $\phi'_i$  to get its DNF, then convert it to CNF  $\phi_i''$
  - Add auxillary variables to each  $\phi_i''$  to get three literals in it, yielding  $\phi_i'''$
  - **9** Final CNF formula is  $\phi''' = \bigwedge_i \phi_i'''$

4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m >

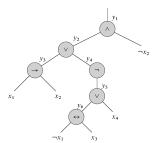
### Nebřaska

### Building the Parse Tree



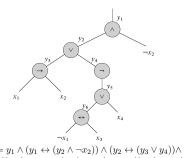


### $\phi = ((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$



Might need to parenthesize  $\phi$  to put at most two children per node

### Assign Variables to wires



 $\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2)) \land (y_2 \leftrightarrow (y_3 \lor y_4)) \land$  $(y_3 \leftrightarrow (x_1 \rightarrow x_2)) \land (y_4 \leftrightarrow \neg y_5) \land (y_5 \leftrightarrow (y_6 \lor x_4)) \land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$ 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x 4 m x

### Nebraska

### Convert Each Clause to CNF

• Consider first clause  $\phi_1' = (y_1 \leftrightarrow (y_2 \land \neg x_2))$ 

Truth table:

| $y_1$ | $y_2$ | $x_2$ | $(y_1 \leftrightarrow (y_2 \land \neg x_2))$ |
|-------|-------|-------|----------------------------------------------|
| 1     | 1     | 1     | 0                                            |
| 1     | 1     | 0     | 1                                            |
| 1     | 0     | 1     | 0                                            |
| 1     | 0     | 0     | 0                                            |
| 0     | 1     | 1     | 1                                            |
| 0     | 1     | 0     | 0                                            |
| 0     | 0     | 1     | 1                                            |
| 0     | 0     | 0     | 1                                            |
|       |       |       |                                              |

• Can now directly read off DNF of negation:

 $\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$ 

• And use DeMorgan's Law to convert it to CNF:

 $\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$ 

### Nebraska

### Add Auxillary Variables

- $\bullet$  Based on our construction,  $\phi=\phi''=\bigwedge_i\phi_i''$  , where each  $\phi_i''$  is a CNF formula each with at most three literals per clause
- But we need to have exactly three per clause!
- Simple fix: For each clause  $C_i$  of  $\phi''$ ,
  - $\begin{tabular}{l} \blacksquare \end{tabular} \begin{tabular}{l} \blacksquare \end{tabular} \begin{tabula$
  - $\textbf{ 9} \ \, \text{If} \,\, C_i = (\ell_1 \vee \ell_2) \,\, \text{for distinct literals} \,\, \ell_1 \,\, \text{and} \,\, \ell_2, \,\, \text{then add to} \,\, \phi'''$
  - $\begin{array}{c} (\ell_1 \vee \ell_2 \vee p) \wedge (\ell_1 \vee \ell_2 \vee \neg p) \\ \bullet \quad \text{If } C_i = (\ell) \text{, then add to } \phi''' \end{array}$  $(\ell \vee p \vee q) \wedge (\ell \vee p \vee \neg q) \wedge (\ell \vee \neg p \vee q) \wedge (\ell \vee \neg p \vee \neg q)$
- $\bullet \ p$  and q are  $\mbox{\bf auxillary variables},$  and the combinations in which they're added result in a logically equivalent expression to that of the original clause, regardless of the values of p and q

### Nebraska

### Proof of Correctness of Reduction

ullet  $\phi$  has a satisfying assignment iff  $\phi'''$  does

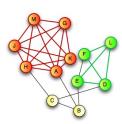
- - lacktriangle CIRCUIT-SAT reduction to SAT implies satisfiability preserved from  $\phi$ to  $\phi'$
  - ② Use of truth tables and DeMorgan's Law ensures  $\phi''$  equivalent to  $\phi'$
  - **3** Addition of auxillary variables ensures  $\phi'''$  equivalent to  $\phi''$
- ullet Constructing  $\phi'''$  from  $\phi$  takes polynomial time
  - $\textcircled{\scriptsize 0} \ \phi' \ \text{gets variables from} \ \phi, \ \text{plus at most one variable and one clause per}$ operator in  $\phi$
  - ullet Each clause in  $\phi'$  has at most 3 variables, so each truth table has at most 8 rows, so each clause in  $\phi'$  yields at most 8 clauses in  $\phi$
  - lacktriangle Since there are only two auxillary variables, each clause in  $\phi''$  yields at  $\bmod \ 4 \ \text{in} \ \phi'''$
  - Thus size of  $\phi'''$  is polynomial in size of  $\phi$ , and each step easily done  $in\ polynomial\ time$

### Nebraska

### NPC Problem: Clique Finding (CLIQUE)

ullet Given: An undirected graph G=(V,E) and value k

Question: Does G contain a clique (complete subgraph) of size k?



Has a clique of size k=6, but not of size 7

### Nebřaska

### CLIQUE is NPC

- CLIQUE is in NP: A list of vertices in the clique certifies that the answer is "yes" and this can be easily checked in poly time (how?)
- $\bullet$  CLIQUE is NP-hard: Will show 3-CNF-SAT  $\leq_P$  CLIQUE by mapping any instance  $\phi$  of 3-CNF-SAT to some instance  $\langle G,k \rangle$  of CLIQUE
  - Seems strange to reduce a boolean formula to a graph, but we will show that  $\phi$  has a satisfying assignment iff G has a clique of size k
  - Caveat: the reduction merely preserves the iff relationship; it does not try to directly solve either problem, nor does it assume it knows what the answer is

101 101 121 121 2 900

### Nebřáska

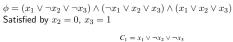
### The Reduction

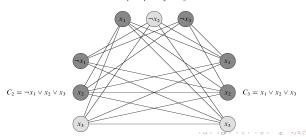
- ullet Let  $\phi = C_1 \wedge \cdots \wedge C_k$  be a 3-CNF formula with k clauses
- For each clause  $C_r=(\ell_1^r\vee\ell_2^r\vee\ell_3^r)$  put vertices  $v_1^r,\,v_2^r,$  and  $v_3^r$  into V
- Add edge  $(v_i^r, v_i^s)$  to E if:
  - $\ \, \textbf{0} \ \, r \neq s \text{, i.e. } v_i^r \text{ and } v_j^s \text{ are in separate triples}$
- · Obviously can be done in polynomial time

10 + 10 + 12 + 12 + 2 + 900

### Nebraska

### The Reduction (2)





### Nebraska

### The Reduction (3)

 $\Rightarrow$  If  $\phi$  has a satisfying assignment, then at least one literal in each clause is true

- Picking corresponding vertex from a true literal from each clause yields a set  $V^\prime$  of k vertices, each in a distinct triple
- ullet Since each vertex in  $V^\prime$  is in a distinct triple and literals that are negations of each other cannot both be true in a satisfying assignment, there is an edge between each pair of vertices in  $V^{\prime}$
- ullet V' is a clique of size k
- $\Leftarrow$  If G has a size-k clique V', can assign 1 to corresponding literal of each vertex in V'
- Each vertex in its own triple, so each clause has a literal set to 1
- Will not try to set both a literal and its negation to 1
- Get a satisfying assignment

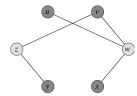


### Nebraska

### NPC Problem: Vertex Cover Finding (VERTEX-COVER)

• A vertex in a graph is said to cover all edges incident to it

- A vertex cover of a graph is a set of vertices that covers all edges in the graph
- ullet Given: An undirected graph G=(V,E) and value k
- Question: Does G contain a vertex cover of size k?



### Nebraska

### **VERTEX-COVER** is NPC

• VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies that the answer is "yes" and this can be easily checked in

ullet VERTEX-COVER is NP-hard: Will show CLIQUE  $\leq_P$ VERTEX-COVER by mapping any instance (G, k) of CLIQUE to some instance  $\langle G',k'\rangle$  of VERTEX-COVER

ullet Reduction is simple: Given instance  $\langle G=(V,E),k \rangle$  of CLIQUE, instance of VERTEX-COVER is  $\langle \overline{G}, |V|-k \rangle$  , where  $\overline{G}=(V,\overline{E})$  is G's complement:

 $\overline{E} = \{(u,v): u,v \in V, u \neq v, (u,v) \not\in E\}$ 

• Easily done in polynomial time



### 

• Question: Is there a subset  $S'\subseteq S$  whose elements sum to t?
• E.g.  $S=\{1,2,7,14,49,98,343,686,2409,2793,16808,17206,117705,117993\}$ 

and t = 138457 has a solution  $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$ 

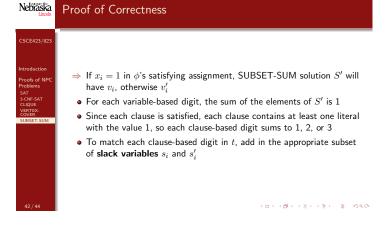
<□ > <**週** > < 돈 > < 돈 > ○돈 · **의**익은

### Nebiaska SUBSET-SUM is NPC SUBSET-SUM is in NP: The subset S' certifies that the answer is "yes" and this can be easily checked in poly time SUBSET-SUM is NP-hard: Will show 3-CNF-SAT $\leq_{\rm P}$ SUBSET-SUM by mapping any instance $\phi$ of 3-CNF-SAT to some instance $\langle S, t \rangle$ of SUBSET-SUM Make two reasonable assumptions about $\phi$ : No clause contains both a variable and its negation Each variable appears in at least one clause

### Nebraska CSCE423/823 • Let $\phi$ have k• Reduction creation Proofs of NPC Problems SAT 3-CNF-SAT CLOVER SUMSET-SUM • Each number variables and variables and of for 1 in $C_j$ 's • For each and 0 for 1 in $C_j$ 's • For each digit and • Greatest sum

Let φ have k clauses C<sub>1</sub>,..., C<sub>k</sub> over n variables x<sub>1</sub>,...,x<sub>n</sub>
Reduction creates two numbers in S for each variable x<sub>i</sub> and two numbers for each clause C<sub>j</sub>
Each number has n + k digits, the most significant n tied to variables and least significant k tied to clauses
Target t has a 1 in each digit tied to a variable and a 4 in each digit tied to a clause
For each x<sub>i</sub>, S contains integers v<sub>i</sub> and v'<sub>i</sub>, each with a 1 in x<sub>i</sub>'s digit and 0 for other variables. Put a 1 in C<sub>j</sub>'s digit for v<sub>i</sub> if x<sub>i</sub> in C<sub>j</sub>, and a 1 in C<sub>j</sub>'s digit for v'<sub>i</sub> if ¬x<sub>i</sub> in C<sub>j</sub>
For each C<sub>j</sub>, S contains integers s<sub>j</sub> and s'<sub>j</sub>, where s<sub>j</sub> has a 1 in C<sub>j</sub>'s digit and 0 elsewhere, and s'<sub>j</sub> has a 2 in C<sub>j</sub>'s digit and 0 elsewhere
Greatest sum of any digit is 6, so no carries when summing integers
Can be done in polynomial time

| Nebraska<br>Lincoln | The Reduction (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |   |   |   |   |   |   |   |   |                             |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|---|---|---|---|---|---|---|-----------------------------|--|--|--|--|
| CSCE423/823         | C = (x, y, x, y, x) C = (x, y, x, |                 |   |   |   |   |   |   |   |   |                             |  |  |  |  |
|                     | $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |   |   |   |   |   |   |   |   |                             |  |  |  |  |
|                     | $C_3 = (\neg x_1 \lor \neg x_2 \lor x_3), C_4 = (x_1 \lor x_2 \lor x_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |   |   |   |   |   |   |   |   |                             |  |  |  |  |
| Introduction        | $x_1  x_2  x_3  C_1  C_2  C_3  C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |   |   |   |   |   |   |   |   |                             |  |  |  |  |
| Proofs of NPC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\nu_1$         | = | 1 | 0 | 0 | 1 | 0 | 0 | 1 |                             |  |  |  |  |
| Problems            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $v_1'$          | = | 1 | 0 | 0 | 0 | 1 | 1 | 0 |                             |  |  |  |  |
| SAT<br>3-CNF-SAT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $v_2$           | = | 0 | 1 | 0 | 0 | 0 | 0 | 1 |                             |  |  |  |  |
| CLIQUE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $v_2^r$         | = | 0 | 1 | 0 | 1 | 1 | 1 | 0 |                             |  |  |  |  |
| VERTEX-<br>COVER    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $v_3$           | = | 0 | 0 | 1 | 0 | 0 | 1 | 1 |                             |  |  |  |  |
| SUBSET-SUM          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\nu_3'$        | = | 0 | 0 | 1 | 1 | 1 |   | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s_1$           | = | 0 | 0 | 0 | 1 | 0 | 0 | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s' <sub>1</sub> | = | 0 | 0 | 0 | 2 | 0 | 0 | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82              | = | 0 | 0 | 0 | 0 | 1 |   | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s_2'$          | = | 0 | 0 | 0 | 0 | 2 | 0 | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S3              | = | 0 | 0 | 0 | 0 | 0 | 1 | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S <sub>3</sub>  | = | 0 | 0 | 0 | 0 | 0 | 0 | 0 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54              | - | 0 | 0 | 0 | 0 | 0 | 0 | 2 |                             |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54              |   |   |   |   |   |   |   |   | . 0 . 0 . 1                 |  |  |  |  |
| 41 / 44             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı               | = | 1 | 1 | 1 | 4 | 4 | 4 | 4 | $x_1 = 0, x_2 = 0, x_3 = 1$ |  |  |  |  |
| 41/44               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |   |   |   |   |   |   |   |   | 13/13/12/12/ 2 540          |  |  |  |  |





### Proof of Correctness (2)

### CSCE423/82

Introduction
Proofs of NP
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER

- $\leftarrow \text{ In SUBSET-SUM solution } S', \text{ for each } i=1,\dots,n, \text{ exactly one of } v_i \\ \text{ and } v_i' \text{ must be in } S', \text{ or sum won't match } t \\ \end{cases}$
- $\bullet$  If  $v_i \in S',$  set  $x_i = 1$  in satisfying assignment, otherwise we have  $v_i' \in S'$  and set  $x_i = 0$
- ullet To get a sum of 4 in clause-based digit  $C_j$ , S' must include a  $v_i$  or  $v_i'$  value that is 1 in that digit (since slack variables sum to at most 3)
- ullet Thus, if  $v_i \in S'$  has a 1 in  $C_j$ 's position, then  $x_i$  is in  $C_j$  and we set  $x_i = 1$ , so  $C_j$  is satisfied (similar argument for  $v_i' \in S'$  and setting  $x_i = 0$ )
- $\bullet$  This holds for all clauses, so  $\phi$  is satisfied

4 D > 4 B > 4 E > 4 E > E 9940

### Nebraska

### In-Class Exercise

SCE423/8

Introduction
Proofs of NPC
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEX-

• OK, everything perfectly clear?

- Want a shot at extra credit?
- Put away your books (keep your notes), split into groups, and get ready for an in-class exercise!

40 × 40 × 45 × 45 × 5 × 90 0