
CSCE423/823

Introduction

Proofs of NPC
Problems

2pt 0em

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

1 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Introduction

So far, we have focused on problems with “e�cient” algorithms

I.e. problems with algorithms that run in polynomial time: O(nc) for
some constant c

Side note: We call it e�cient even if c is large, since it is likely that
another, even more e�cient, algorithm exists

But, for some problems, the fastest known algorithms require time
that is superpolynomial

Includes sub-exponential time (e.g. 2n
1/3

), exponential time (e.g. 2n),
doubly exponential time (e.g. 22

n
), etc.

There are even problems that cannot be solved in any amount of time
(e.g. the “halting problem”)

2 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP

Our focus will be on the complexity classes called P and NP

Centers on the notion of a Turing machine (TM), which is a finite
state machine with an infinitely long tape for storage

Anything a computer can do, a TM can do, and vice-versa
More on this in CSCE 428/828 and CSCE 424/824

P = “deterministic polynomial time” = the set of problems that can
be solved by a deterministic TM (deterministic algorithm) in
polynomial time

NP = “nondeterministic polynomial time” = the set of problems
that can be solved by a nondeterministic TM in polynomial time

Can loosely think of a nondeterministic TM as one that can explore
many, many possible paths of computation at once
Equivalently, NP is the set of problems whose solutions, if given, can
be verified in polynomial time

3 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP Example

Problem HAM-CYCLE: Does a graph G = (V,E) contain a
hamiltonian cycle, i.e. a simple cycle that visits every vertex in V
exactly once?

This problem is in NP, since if we were given a specific G plus the
answer to the question plus a certificate, we can verify a “yes”
answer in polynomial time using the certificate
What would be an appropriate certificate?
Not known if HAM-CYCLE 2 P

4 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP Example (2)

Problem EULER: Does a directed graph G = (V,E) contain an
Euler tour, i.e. a cycle that visits every edge in E exactly once and
can visit vertices multiple times?

This problem is in P, since we can answer the question in polynomial
time by checking if each vertex’s in-degree equals its out-degree
Does that mean that the problem is also in NP? If so, what is the
certificate?

5 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

NP-Completeness

Any problem in P is also in NP, since if we can e�cently solve the
problem, we get the poly-time verification for free
) P ✓ NP

Not known if P ⇢ NP, i.e. unknown if there a problem in NP that’s
not in P

A subset of the problems in NP is the set of NP-complete (NPC)
problems

Every problem in NPC is at least as hard as all others in NP
These problems are believed to be intractable (no e�cient algorithm),
but not yet proven to be so
If any NPC problem is in P, then P = NP and life is glorious

..
^

6 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Proving NP-Completeness

Thus, if we prove that a problem is NPC, we can tell our boss that
we cannot find an e�cient algorithm and should take a di↵erent
approach

E.g. approximation algorithm, heuristic approach

How do we prove that a problem A is NPC?
1 Prove that A 2 NP by finding certificate
2 Show that A is as hard as any other NP problem by showing that if we

can e�ciently solve A then we can e�ciently solve all problems in NP

First step is usually easy, but second looks di�cult

Fortunately, part of the work has been done for us ...

7 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions

We will use the idea of a reduction of one problem to another to
prove how hard it is

A reduction takes an instance of one problem A and transforms it to
an instance of another problem B in such a way that a solution to
the instance of B yields a solution to the instance of A

Example 1: How did we solve the bipartite matching problem?

Example 2: How did we solve the topological sort problem?

Time complexity of reduction-based algorithm for A is the time for
the reduction to B plus the time to solve the instance of B

8 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Decision Problems

Before we go further into reductions, we simplify our lives by
focusing on decision problems

In a decision problem, the only output of an algorithm is an answer
“yes” or “no”

I.e. we’re not asked for a shortest path or a hamiltonian cycle, etc.

Not as restrictive as it may seem: Rather than asking for the weight
of a shortest path from i to j, just ask if there exists a path from i
to j with weight at most k

Such decision versions of optimization problems are no harder than
the original optimization problem (why?), so if we show the decision
version is hard, then so is the optimization version

Decision versions are especially convenient when thinking in terms of
languages and the Turing machines that accept/reject them

9 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (2)

What is a reduction in the NPC sense?

Start with two problems A and B, and we want to show that
problem B is at least as hard as A

Will reduce A to B via a polynomial-time reduction by
transforming any instance ↵ of A to some instance � of B such that

1 The transformation must take polynomial time (since we’re talking
about hardness in the sense of e�cient vs. ine�cient algorithms)

2 The answer for ↵ is “yes” if and only if the answer for � is “yes”

If such a reduction exists, then B is at least as hard as A since if an
e�cient algorithm exists for B, we can solve any instance of A in
polynomial time

Notation: A P B, which reads as “A is no harder to solve than B,
modulo polynomial time reductions”

10 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (3)

11 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (4)

But if we want to prove that a problem B is NPC, do we have to
reduce to it every problem in NP?

No we don’t:
If another problem A is known to be NPC, then we know that any
problem in NP reduces to it
If we reduce A to B, then any problem in NP can reduce to B via its
reduction to A followed by A’s reduction to B
We then can call B an NP-hard problem, which is NPC if it is also in
NP
Still need our first NPC problem to use as a basis for our reductions

12 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT

Our first NPC problem: CIRCUIT-SAT

An instance is a boolean combinational circuit (no feedback, no
memory)

Question: Is there a satisfying assignment, i.e. an assignment of
inputs to the circuit that satisfies it (makes its output 1)?

13 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT (2)

Satisfiable Unsatisfiable

14 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT (3)

To prove CIRCUIT-SAT to be NPC, need to show:
1 CIRCUIT-SAT 2 NP; what is its certificate that we can confirm in

polynomial time?
2 That any problem in NP reduces to CIRCUIT-SAT

We’ll skip the NP-hardness proof, save to say that it leverages the
existence of an algorithm that verifies certificates for some NP
problem

15 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Other NPC Problems

We’ll use the fact that CIRCUIT-SAT is NPC to prove that these
other problems are as well:

SAT: Does boolean formula � have a satisfying assignment?
3-CNF-SAT: Does 3-CNF formula � have a satisfying assignment?
CLIQUE: Does graph G have a clique (complete subgraph) of k
vertices?
VERTEX-COVER: Does graph G have a vertex cover (set of vertices
that touches all edges) of k vertices?
HAM-CYCLE: Does graph G have a hamiltonian cycle?
TSP: Does complete, weighted graph G have a hamiltonian cycle of
total weight  k?
SUBSET-SUM: Is there a subset S0 of finite set S of integers that
sum to exactly a specific target value t?

Many more in Garey & Johnson’s book, with proofs

16 / 44

CSCE423/823

Introduction

E�ciency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Other NPC Problems (2)

(Note di↵erent types of problems involved in reductions)17 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Formula Satisfiability (SAT)

Given: A boolean formula � consisting of
1 n boolean variables x1, . . . , xn
2 m boolean connectives from ^, _, ¬, !, and $
3 Parentheses

Question: Is there an assignment of boolean values to x1, . . . , xn to
make � evaluate to 1?

E.g.: � = ((x1 ! x2) _ ¬((¬x1 $ x3) _ x4)) ^ ¬x2 has satisfying
assignment x1 = 0, x2 = 0, x3 = 1, x4 = 1 since

� = ((0 ! 0) _ ¬((¬0 $ 1) _ 1)) ^ ¬0
= (1 _ ¬((1 $ 1) _ 1)) ^ 1

= (1 _ ¬(1 _ 1)) ^ 1

= (1 _ 0) ^ 1

= 1
18 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC

SAT is in NP: �’s satisfying assignment certifies that the answer is
“yes” and this can be easily checked in poly time

SAT is NP-hard: Will show CIRCUIT-SAT P SAT by reducing from
CIRCUIT-SAT to SAT

In reduction, need to map any instance (circuit) C of CIRCUIT-SAT
to some instance (formula) � of SAT such that C has a satisfying
assignment if and only if � does

Further, the time to do the mapping must be polynomial in the size
of the circuit, implying that �’s representation must be polynomially
sized

19 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (2)

Define a variable in � for each wire in C:

20 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (3)

Then define a clause of � for each gate that defines the function for
that gate:

� = x10 ^ (x4 $ ¬x3)
^ (x5 $ (x1 _ x2))

^ (x6 $ ¬x4)
^ (x7 $ (x1 ^ x2 ^ x4))

^ (x8 $ (x5 _ x6))

^ (x9 $ (x6 _ x7))

^ (x10 $ (x7 ^ x8 ^ x9))

21 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (4)

Size of � is polynomial in size of C (number of gates and wires)

) If C has a satisfying assignment, then the final output of the circuit
is 1 and the value on each internal wire matches the output of the
gate that feeds it

Thus, � evaluates to 1

(If � has a satisfying assignment, then each of �’s clauses is satisfied,
which means that each of C’s gate’s output matches its function
applied to its inputs, and the final output is 1

Since satisfying assignment for C) satisfying assignment for � and
vice-versa, we get C has a satisfying assignment if and only if � does

22 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

Given: A boolean formula that is in 3-conjunctive normal form
(3-CNF), which is a conjunction of clauses, each a disjunction of 3
literals, e.g.

(x1_¬x1_¬x2)^ (x3_x2_x4)^ (¬x1_¬x3_¬x4)^ (x4_x5_x1)

Question: Is there an assignment of boolean values to x1, . . . , xn to
make the formula evaluate to 1?

23 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

3-CNF-SAT is NPC

3-CNF-SAT is in NP: The satisfying assignment certifies that the
answer is “yes” and this can be easily checked in poly time

3-CNF-SAT is NP-hard: Will show SAT P 3-CNF-SAT

Again, need to map any instance � of SAT to some instance �000 of
3-CNF-SAT

1 Parenthesize � and build its parse tree, which can be viewed as a
circuit

2 Assign variables to wires in this circuit, as with previous reduction,
yielding �0, a conjunction of clauses

3 Use the truth table of each clause �0
i to get its DNF, then convert it

to CNF �00
i

4 Add auxillary variables to each �00
i to get three literals in it, yielding �000

i
5 Final CNF formula is �000 =

V
i �

000
i

24 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Building the Parse Tree

� = ((x1 ! x2) _ ¬((¬x1 $ x3) _ x4)) ^ ¬x2

Might need to parenthesize � to put at most two children per node
25 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Assign Variables to wires

�0 = y1 ^ (y1 $ (y2 ^ ¬x2)) ^ (y2 $ (y3 _ y4))^
(y3 $ (x1 ! x2)) ^ (y4 $ ¬y5) ^ (y5 $ (y6 _ x4)) ^ (y6 $ (¬x1 $ x3))

26 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Convert Each Clause to CNF

Consider first clause �0
1 = (y1 $ (y2 ^ ¬x2))

Truth table:
y1 y2 x2 (y1 $ (y2 ^ ¬x2))
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

Can now directly read o↵ DNF of negation:

¬�0
1 = (y1^y2^x2)_(y1^¬y2^x2)_(y1^¬y2^¬x2)_(¬y1^y2^¬x2)

And use DeMorgan’s Law to convert it to CNF:

�00
1 = (¬y1_¬y2_¬x2)^(¬y1_y2_¬x2)^(¬y1_y2_x2)^(y1_¬y2_x2)

27 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Add Auxillary Variables

Based on our construction, � = �00 =
V

i

�00
i

, where each �00
i

is a CNF
formula each with at most three literals per clause

But we need to have exactly three per clause!

Simple fix: For each clause C
i

of �00,
1 If Ci has three distinct literals, add it as a clause in �000

2 If Ci = (`1 _ `2) for distinct literals `1 and `2, then add to �000

(`1 _ `2 _ p) ^ (`1 _ `2 _ ¬p)
3 If Ci = (`), then add to �000

(` _ p _ q) ^ (` _ p _ ¬q) ^ (` _ ¬p _ q) ^ (` _ ¬p _ ¬q)
p and q are auxillary variables, and the combinations in which
they’re added result in a logically equivalent expression to that of the
original clause, regardless of the values of p and q

28 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness of Reduction

� has a satisfying assignment i↵ �000 does
1 CIRCUIT-SAT reduction to SAT implies satisfiability preserved from �

to �0

2 Use of truth tables and DeMorgan’s Law ensures �00 equivalent to �0

3 Addition of auxillary variables ensures �000 equivalent to �00

Constructing �000 from � takes polynomial time
1 �0 gets variables from �, plus at most one variable and one clause per

operator in �
2 Each clause in �0 has at most 3 variables, so each truth table has at

most 8 rows, so each clause in �0 yields at most 8 clauses in �00

3 Since there are only two auxillary variables, each clause in �00 yields at
most 4 in �000

4 Thus size of �000 is polynomial in size of �, and each step easily done
in polynomial time

29 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Clique Finding (CLIQUE)

Given: An undirected graph G = (V,E) and value k
Question: Does G contain a clique (complete subgraph) of size k?

Has a clique of size k = 6, but not of size 7
30 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

CLIQUE is NPC

CLIQUE is in NP: A list of vertices in the clique certifies that the
answer is “yes” and this can be easily checked in poly time (how?)

CLIQUE is NP-hard: Will show 3-CNF-SAT P CLIQUE by mapping
any instance � of 3-CNF-SAT to some instance hG, ki of CLIQUE

Seems strange to reduce a boolean formula to a graph, but we will
show that � has a satisfying assignment i↵ G has a clique of size k
Caveat: the reduction merely preserves the i↵ relationship; it does not
try to directly solve either problem, nor does it assume it knows what
the answer is

31 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction

Let � = C1 ^ · · · ^ C
k

be a 3-CNF formula with k clauses

For each clause C
r

= (`r1 _ `r2 _ `r3) put vertices v
r

1, v
r

2, and vr3 into V

Add edge (vr
i

, vs
j

) to E if:
1 r 6= s, i.e. vri and vsj are in separate triples
2 `ri is not the negation of `sj

Obviously can be done in polynomial time

32 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (2)

� = (x1 _ ¬x2 _ ¬x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)
Satisfied by x2 = 0, x3 = 1

33 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (3)

) If � has a satisfying assignment, then at least one literal in each
clause is true

Picking corresponding vertex from a true literal from each clause
yields a set V 0 of k vertices, each in a distinct triple

Since each vertex in V 0 is in a distinct triple and literals that are
negations of each other cannot both be true in a satisfying
assignment, there is an edge between each pair of vertices in V 0

V 0 is a clique of size k

(If G has a size-k clique V 0, can assign 1 to corresponding literal of
each vertex in V 0

Each vertex in its own triple, so each clause has a literal set to 1

Will not try to set both a literal and its negation to 1

Get a satisfying assignment
34 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

A vertex in a graph is said to cover all edges incident to it
A vertex cover of a graph is a set of vertices that covers all edges in
the graph
Given: An undirected graph G = (V,E) and value k
Question: Does G contain a vertex cover of size k?

Has a vertex cover of size k = 2, but not of size 135 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

VERTEX-COVER is NPC

VERTEX-COVER is in NP: A list of vertices in the vertex cover
certifies that the answer is “yes” and this can be easily checked in
poly time

VERTEX-COVER is NP-hard: Will show CLIQUE P
VERTEX-COVER by mapping any instance hG, ki of CLIQUE to
some instance hG0, k0i of VERTEX-COVER
Reduction is simple: Given instance hG = (V,E), ki of CLIQUE,
instance of VERTEX-COVER is hG, |V |� ki, where G = (V,E) is
G’s complement:

E = {(u, v) : u, v 2 V, u 6= v, (u, v) 62 E}

Easily done in polynomial time

36 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness

) Assume G has a size-k clique V 0 ✓ V

Consider edge (u, v) 2 E

If it’s in E, then (u, v) 62 E, so at least one of u and v (which cover
(u, v)) is not in V 0, so at least one of them is in V \ V 0

This holds for each edge in E, so V \ V 0 is a vertex cover of G of
size |V |� k

(Assume G has a size-(|V |� k) vertex cover V 0

For each (u, v) 2 E, at least one of u and v is in V 0

By contrapositive, if u, v 62 V 0, then (u, v) 2 E

Since every pair of nodes in V \ V 0 has an edge between them,
V \ V 0 is a clique of size |V |� |V 0| = k

37 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Subset Sum (SUBSET-SUM)

Given: A finite set S of positive integers and a positive integer
target t

Question: Is there a subset S0 ✓ S whose elements sum to t?

E.g. S =
{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993}
and t = 138457 has a solution
S0 = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705}

38 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SUBSET-SUM is NPC

SUBSET-SUM is in NP: The subset S0 certifies that the answer is
“yes” and this can be easily checked in poly time

SUBSET-SUM is NP-hard: Will show 3-CNF-SAT P
SUBSET-SUM by mapping any instance � of 3-CNF-SAT to some

instance hS, ti of SUBSET-SUM
Make two reasonable assumptions about �:

1 No clause contains both a variable and its negation
2 Each variable appears in at least one clause

39 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction

Let � have k clauses C1, . . . , Ck

over n variables x1, . . . , xn

Reduction creates two numbers in S for each variable x
i

and two
numbers for each clause C

j

Each number has n+ k digits, the most significant n tied to
variables and least significant k tied to clauses

1 Target t has a 1 in each digit tied to a variable and a 4 in each digit
tied to a clause

2 For each xi, S contains integers vi and v0i, each with a 1 in xi’s digit
and 0 for other variables. Put a 1 in Cj ’s digit for vi if xi in Cj , and a
1 in Cj ’s digit for v0i if ¬xi in Cj

3 For each Cj , S contains integers sj and s0j , where sj has a 1 in Cj ’s
digit and 0 elsewhere, and s0j has a 2 in Cj ’s digit and 0 elsewhere

Greatest sum of any digit is 6, so no carries when summing integers

Can be done in polynomial time
40 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (2)

C1 = (x1 _ ¬x2 _ ¬x3), C2 = (¬x1 _ ¬x2 _ ¬x3),
C3 = (¬x1 _ ¬x2 _ x3), C4 = (x1 _ x2 _ x3)

x1 = 0, x2 = 0, x3 = 1
41 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness

) If x
i

= 1 in �’s satisfying assignment, SUBSET-SUM solution S0 will
have v

i

, otherwise v0
i

For each variable-based digit, the sum of the elements of S0 is 1

Since each clause is satisfied, each clause contains at least one literal
with the value 1, so each clause-based digit sums to 1, 2, or 3

To match each clause-based digit in t, add in the appropriate subset
of slack variables s

i

and s0
i

42 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness (2)

(In SUBSET-SUM solution S0, for each i = 1, . . . , n, exactly one of v
i

and v0
i

must be in S0, or sum won’t match t

If v
i

2 S0, set x
i

= 1 in satisfying assignment, otherwise we have
v0
i

2 S0 and set x
i

= 0

To get a sum of 4 in clause-based digit C
j

, S0 must include a v
i

or v0
i

value that is 1 in that digit (since slack variables sum to at most 3)

Thus, if v
i

2 S0 has a 1 in C
j

’s position, then x
i

is in C
j

and we set
x
i

= 1, so C
j

is satisfied (similar argument for v0
i

2 S0 and setting
x
i

= 0)

This holds for all clauses, so � is satisfied

43 / 44

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

In-Class Exercise

OK, everything perfectly clear?

Want a shot at extra credit?

Put away your books (keep your notes), split into groups, and get
ready for an in-class exercise!

44 / 44

