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Introduction

Can use a directed graph as a flow network to model:
Data through communication networks, water/oil/gas through pipes,
assembly lines, etc.

A flow network is a directed graph with two special vertices: source s
that produces flow and sink t that takes in flow

Each directed edge is a conduit with a certain capacity (e.g. 200
gallons/hour)

Vertices are conduit junctions

Except for s and t, flow must be conserved: The flow into a vertex
must match the flow out

Maximum flow problem: Given a flow network, determine the
maximum amount of flow that can get from s to t

Other application: Bipartite matching
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Flow Networks

A flow network G = (V,E) is a directed graph in which each edge
(u, v) 2 E has a nonnegative capacity c(u, v) � 0
If (u, v) 62 E, c(u, v) = 0
Assume that every vertex in V lies on some path from the source

vertex s 2 V to the sink vertex t 2 V
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Flows

A flow in graph G is a function f : V ⇥ V ! R that satisfies:
1

Capacity constraint: For all u, v 2 V , 0  f(u, v)  c(u, v) (flow
should be nonnegative and not exceed capacity)

2

Flow conservation: For all u 2 V \ {s, t},
X

v2V

f(v, u) =
X

v2V

f(u, v)

(flow entering a vertex = flow leaving)

The value of a flow is the net flow out of s (= net flow into t):

|f | =
X

v2V
f(s, v)�

X

v2V
f(v, s)

Maximum flow problem: given graph and capacities, find a flow of
maximum value
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Flow Example

What is the value of this flow?
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Multiple Sources and Sinks

Might have cases where there are multiple sources and/or sinks; e.g.
if there are multiple factories producing products and/or multiple
warehouses to ship to

Can easily accommodate graphs with multiple sources s1, . . . , sk and
multiple sinks t1, . . . , t`

Add to G a supersource s with an edge (s, si) for i 2 {1, . . . , k} and
a supersink t with an edge (tj , t) for j 2 {1, . . . , `}
Each new edge has a capacity of 1
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Multiple Sources and Sinks (2)
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Ford-Fulkerson Method

A method (rather than specific algorithm) for solving max flow

Multiple ways of implementing, with varying running times

Core concepts:
1

Residual network: A network Gf , which is G with capacities reduced
based on the amount of flow f already going through it

2

Augmenting path: A simple path from s to t in residual network Gf

) If such a path exists, then can push more flow through network

3

Cut: A partition of V into S and T where s 2 S and t 2 T ; can
measure net flow and capacity crossing a cut

Method repeatedly finds an augmenting path in residual network,
adds in flow along the path, then updates residual network
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Ford-Fulkerson-Method(G, s, t)

Initialize flow f to 0 ;

1 while there exists augmenting path p in residual

network Gf do

2 augment flow f along p ;

3 end

4 return f ;
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Residual Networks

Given flow network G with capacities c and flow f , residual network
Gf consists of edges with capacities showing how one can change
flow in G

Define residual capacity of an edge as

cf (u, v) =

8
<

:

c(u, v)� f(u, v) if (u, v) 2 E
f(v, u) if (v, u) 2 E
0 otherwise

E.g. if c(u, v) = 16 and f(u, v) = 11, then cf (u, v) = 5 and
cf (v, u) = 11

Then can define Gf = (V,Ef ) as

Ef = {(u, v) 2 V ⇥ V : cf (u, v) > 0}

So Gf will have some edges not in G, and vice-versa
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Residual Networks (2)
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Flow Augmentation

Gf is like a flow network (except that it can have an edge and its
reversal); so we can find a flow within it

If f is a flow in G and f 0 is a flow in Gf , can define the
augmentation of f by f 0 as

(f " f 0)(u, v) =

⇢
f(u, v) + f 0(u, v)� f 0(v, u) if (u, v) 2 E
0 otherwise

Lemma: f " f 0 is a flow in G with value |f " f 0| = |f |+ |f 0|
Proof: Not di�cult to show that f " f 0 satisfies capacity constraint
and and flow conservation; then show that |f " f 0| = |f |+ |f 0|
(pp. 718–719)

Result: If we can find a flow f 0 in Gf , we can increase flow in G
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Augmenting Path

By definition of residual network, an edge (u, v) 2 Ef with
cf (u, v) > 0 can handle additional flow

Since edges in Ef all have positive residual capacity, it follows that if
there is a simple path p from s to t in Gf , then we can increase flow
along each edge in p, thus increasing total flow

We call p an augmenting path

The amount of flow we can put on p is p’s residual capacity:

cf (p) = min{cf (u, v) : (u, v) is on p}
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Augmenting Path (2)

p is shaded; what is cf (p)?
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Augmenting Path (3)

Lemma: Let G = (V,E) be a flow network, f be a flow in G, and p
be an augmenting path in Gf . Define fp : V ⇥ V ! R as

fp(u, v) =

⇢
cf (p) if (u, v) 2 p
0 otherwise

Then fp is a flow in Gf with value |fp| = cf (p) > 0

Corollary: Let G, f , p, and fp be as above. Then f " fp is a flow in
G with value |f " fp| = |f |+ |fp| > |f |
Thus, every augmenting path increases flow in G

When do we stop? Will we have a maximum flow if there is no
augmenting path?
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Max-Flow Min-Cut Theorem

Used to prove that once we run out of augmenting paths, we have a
maximum flow

A cut (S, T ) of a flow network G = (V,E) is a partition of V into
S ✓ V and T = V \ S such that s 2 S and t 2 T

Net flow across the cut (S, T ) is

f(S, T ) =
X

u2S

X

v2T
f(u, v)�

X

u2S

X

v2T
f(v, u)

Capacity of cut (S, T ) is

c(S, T ) =
X

u2S

X

v2T
c(u, v)

A minimum cut is one whose capacity is smallest over all cuts
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Max-Flow Min-Cut Theorem (2)

What are f(S, T ) and c(S, T )?
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Max-Flow Min-Cut Theorem (3)

Lemma: For any flow f , the value of f is the same as the net flow
across any cut; i.e. f(S, T ) = |f | for all cuts (S, T )
Corollary: The value of any flow f in G is upperbounded by the
capacity of any cut of G
Proof:

|f | = f(S, T )

=
X

u2S

X

v2T
f(u, v)�

X

u2S

X

v2T
f(v, u)


X

u2S

X

v2T
f(u, v)


X

u2S

X

v2T
c(u, v)

= c(S, T )
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Max-Flow Min-Cut Theorem (4)

Max-Flow Min-Cut Theorem: If f is a flow in flow network G,
then these statements are equivalent:

1 f is a maximum flow in G
2 Gf has no augmenting paths
3 |f | = c(S, T ) for some (i.e. minimum) cut (S, T ) of G

Proof: Show (1) ) (2) ) (3) ) (1)

(1) ) (2): If Gf has augmenting path p, then fp > 0 and
|f " fp| = |f |+ |fp| > |f | ) contradiction that f is a max flow
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Max-Flow Min-Cut Theorem (5)

(2) ) (3): Assume Gf has no path from s to t and define
S = {u 2 V : s u in Gf} and T = V \ S

(S, T ) is a cut since it partitions V , s 2 S and t 2 T
Consider u 2 S and v 2 T :

If (u, v) 2 E, then f(u, v) = c(u, v) since otherwise cf (u, v) > 0 )
(u, v) 2 Ef ) v 2 S
If (v, u) 2 E, then f(v, u) = 0 since otherwise we’d have

cf (u, v) = f(v, u) > 0 ) (u, v) 2 Ef ) v 2 S
If (u, v) 62 E and (v, u) 62 E, then f(u, v) = f(v, u) = 0

Thus (by applying the Lemma as well)

|f | = f(S, T ) =
X

u2S

X

v2T

f(u, v)�
X

v2T

X

u2S

f(v, u)

=
X

u2S

X

v2T

c(u, v)�
X

v2T

X

u2S

0 = c(S, T )
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Max-Flow Min-Cut Theorem (6)

(3) ) (1):

Corollary says that |f |  c(S0, T 0) for all cuts (S0, T 0)
We’ve established that |f | = c(S, T )
) |f | can’t be any larger

) f is a maximum flow

21 / 35



CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual

Networks

Flow

Augmentation

Augmenting

Path

Max-Flow

Min-Cut

Theorem

Basic

Ford-Fulkerson

Algorithm

Ford-Fulkerson

Example

Analysis of

Ford-Fulkerson

Edmonds-Karp

Algorithm

Maximum

Bipartite

Matching

Ford-Fulkerson(G, s, t)

for each edge (u, v) 2 E do

1 f(u, v) = 0 ;

2 end

3 while there exists path p from s to t in Gf do

4 cf (p) = min{cf (u, v) : (u, v) is in p} ;

5 for each edge (u, v) 2 p do

6 if (u, v) 2 E then

7 f(u, v) = f(u, v) + cf (p) ;

8 else

9 f(v, u) = f(v, u)� cf (p) ;

10

11 end

12 end
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Ford-Fulkerson Example
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Ford-Fulkerson Example (2)
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Analysis of Ford-Fulkerson

Assume all of G’s capacities are integers
If not, but values still rational, can scale them
If values irrational, might not converge

..
_

If we choose augmenting path arbitrarily, then |f | increases by at
least one unit per iteration ) number of iterations is  |f⇤| = value
of max flow

|Ef |  2|E|
Every vertex is on a path from s to t ) |V | = O(|E|)

) Finding augmenting path via BFS or DFS takes time O(|E|), as do
initialization and each augmentation step

Total time complexity: O(|E||f⇤|)
Not polynomial in size of input! (What is size of input?)
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Example of Large |f ⇤|

Arbitrary choice of augmenting path can result in small increase in |f |
each step

Takes 2⇥ 106 augmentations
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Edmonds-Karp Algorithm

Uses Ford-Fulkerson Method

Rather than arbitrary choice of augmenting path p from s to t in Gf ,
choose one that is shortest in terms of number of edges

How can we easily do this?

Will show time complexity of O(|V ||E|2), independent of |f⇤|
Proof based on �f (u, v), which is length of shortest path from u to v
in Gf , in terms of number of edges

Lemma: When running Edmonds-Karp on G, for all vertices
v 2 V \ {s, t}, shortest path distance �f (u, v) in Gf increases
monotonically with each flow augmentation
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Edmonds-Karp Algorithm (2)

Theorem: When running Edmonds-Karp on G, the total number of
flow augmentations is O(|V ||E|)
Proof: Call an edge (u, v) critical on augmenting path p if
cf (p) = cf (u, v)
When (u, v) is critical for the first time, �f (s, v) = �f (s, u) + 1
At the same time, (u, v) disappears from residual network and does
not reappear until its flow decreases, which only happens when (v, u)
appears on an augmenting path, at which time

�f 0(s, u) = �f 0(s, v) + 1

� �f (s, v) + 1 (from Lemma)

= �f (s, u) + 2

Thus, from the time (u, v) becomes critical to the next time it does,
u’s distance from s increases by at least 2
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Edmonds-Karp Algorithm (3)

Since u’s distance from s is at most |V |� 2 (because u 6= t) and at
least 0, edge (u, v) can be critical at most |V |/2 times

There are at most 2|E| edges that can be critical in a residual
network

Every augmentation step has at least one critical edge

) Number of augmentation steps is O(|V ||E|), instead of O(|f⇤|) in
previous algorithm

) Edmonds-Karp time complexity is O(|V ||E|2)
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Maximum Bipartite Matching

In an undirected graph G = (V,E), a matching is a subset of edges
M ✓ E such that for all v 2 V , at most one edge from M is incident
on v

If an edge from M is incident on v, v is matched, otherwise
unmatched

Problem: Find a matching of maximum cardinality

Special case: G is bipartite, meaning V partitioned into disjoint sets
L and R and all edges of E go between L and R

Applications: Matching machines to tasks, arranging marriages
between interested parties, etc.
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Bipartite Matching Example

|M | = 2 |M | = 3 (maximum)
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Casting Bipartite Matching as Max Flow

Can cast bipartite matching problem as max flow

Given bipartite graph G = (V,E), define corresponding flow network

G0 = (V 0, E0):
V 0 = V [ {s, t}

E0 = {(s, u) : u 2 L} [ {(u, v) : (u, v) 2 E} [ {(v, t) : v 2 R}

c(u, v) = 1 for all (u, v) 2 E0
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Casting Bipartite

Matching as

Max Flow

Casting Bipartite Matching as Max Flow (2)

Value of flow across cut (L [ {s}, R [ {t}) equals |M |
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Casting Bipartite Matching as Max Flow (3)

Lemma: Let G = (V,E) be a bipartite graph with V paritioned into
L and R and let G0 = (V 0, E0) be its corresponding flow network. If
M is a matching in G, then there is an integer-valued flow f in G0

with value |f | = |M |. Conversely, if there is an integer-valued flow f
in G0, then there is a matching M in G with cardinality |M | = |f |.
Proof: ) If (u, v) 2 M , set f(s, u) = f(u, v) = f(v, t) = 1

Set flow of all other edges to 0
Flow satisfies capacity constraint and flow conservation
Flow across cut (L [ {s}, R [ {t}) is |M |

( Let f be integer-valued flow in G0, and set

M = {(u, v) : u 2 L, v 2 R, f(u, v) > 0}

Any flow into u must be exactly 1 in and exactly 1 out on one edge
Similar argument for v 2 R, so M is a matching with |M | = |f |
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Max Flow

Casting Bipartite Matching as Max Flow (4)

Theorem: If all edges in a flow network have integral capacities,
then the Ford-Fulkerson method returns a flow with value that is an
integer, and for all (u, v) 2 V , f(u, v) is an integer

Since the corresponding flow network for bipartite matching uses all
integer capacities, can use Ford-Fulkerson to solve matching problem

Any matching has cardinality O(|V |), so the corresponding flow
network has a maximum flow with value |f⇤| = O(|V |), so time
complexity of matching is O(|V ||E|)
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