
CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

2pt 0em

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 06 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

1 / 23

mailto:sscott@cse.unl.edu

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Introduction

Similar to SSSP, but find shortest paths for all pairs of vertices

Given a weighted, directed graph G = (V,E) with weight function
w : E ! R, find �(u, v) for all (u, v) 2 V ⇥ V

One solution: Run an algorithm for SSSP |V | times, treating each
vertex in V as a source

If no negative weight edges, use Dijkstra’s algorithm, for time
complexity of O(|V |3 + |V ||E|) = O(|V |3) for array implementation,
O(|V ||E| log |V |) if heap used
If negative weight edges, use Bellman-Ford and get O(|V |2|E|) time
algorithm, which is O(|V |4) if graph dense

Can we do better?
Matrix multiplication-style algorithm: ⇥(|V |3 log |V |)
Floyd-Warshall algorithm: ⇥(|V |3)
Both algorithms handle negative weight edges

2 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Adjacency Matrix Representation

Will use adjacency matrix representation

Assume vertices are numbered: V = {1, 2, . . . , n}
Input to our algorithms will be n⇥ n matrix W :

wij =

8
<

:

0 if i = j
weight of edge (i, j) if (i, j) 2 E
1 if (i, j) 62 E

For now, assume negative weight cycles are absent

In addition to distance matrices L and D produced by algorithms,
can also build predecessor matrix ⇧, where ⇡ij = predecessor of j on
a shortest path from i to j, or nil if i = j or no path exists

Well-defined due to optimal substructure property

3 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Print-All-Pairs-Shortest-Path(⇧, i, j)

if i == j then

1 print i

2 else if ⇡ij == nil then

3 print “no path from ” i “ to ” j “ exists”

4 else

5 Print-All-Pairs-Shortest-Path(⇧, i,⇡ij)
print j

6

4 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Shortest Paths and Matrix Multiplication

Will maintain a series of matrices L(m)
=

⇣
`
(m)
ij

⌘
, where `

(m)
ij = the

minimum weight of any path from i to j that uses at most m edges

Special case: `(0)ij = 0 if i = j, 1 otherwise

`
(0)
13 = 1, `(1)13 = 8, `(2)13 = 7

5 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Recursive Solution

Can exploit optimal substructure property to get a recursive

definition of `(m)
ij

To follow shortest path from i to j using at most m edges, either:
1 Take shortest path from i to j using  m� 1 edges and stay put, or
2 Take shortest path from i to some k using  m� 1 edges and traverse

edge (k, j)

`
(m)
ij = min

✓
`
(m�1)
ij , min

1kn

⇣
`
(m�1)
ik + wkj

⌘◆

Since wjj = 0 for all j, simplify to

`
(m)
ij = min

1kn

⇣
`
(m�1)
ik + wkj

⌘

If no negative weight cycles, then since all shortest paths have
 n� 1 edges,

�(i, j) = `
(n�1)
ij = `

(n)
ij = `

(n+1)
ij = · · ·

6 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Bottum-Up Computation of L Matrices

Start with weight matrix W and compute series of matrices
L(1), L(2), . . . , L(n�1)

Core of the algorithm is a routine to compute L(m+1) given L(m) and
W

Start with L(1)
= W , and iteratively compute new L matrices until

we get L(n�1)

Why is L(1)
== W?

Can we detect negative-weight cycles with this algorithm? How?

7 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Extend-Shortest-Paths(L,W)

n = number of rows of L // This is L(m)

1 create new n⇥ n matrix L0
// This will be L(m+1)

2 for i = 1 to n do

3 for j = 1 to n do

4 `0ij = 1
5 for k = 1 to n do

6 `0ij = min
�
`0ij , `ik + wkj

�

7 end

8 end

9 end

10 return L0

8 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Slow-All-Pairs-Shortest-Paths(W)

n = number of rows of W

1 L(1) = W

2 for m = 2 to n� 1 do

3 L(m) = Extend-Shortest-Paths(L(m�1),W)

4 end

5 return L(n�1)

9 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Example

10 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Improving Running Time

What is time complexity of Slow-All-Pairs-Shortest-Paths?

Can we do better?

Note that if, in Extend-Shortest-Paths, we change + to
multiplication and min to +, get matrix multiplication of L and W

If we let � represent this “multiplication” operator, then
Slow-All-Pairs-Shortest-Paths computes

L(2)
= L(1) �W = W 2� ,

L(3)
= L(2) �W = W 3� ,

...
L(n�1)

= L(n�2) �W = Wn ��1

Thus, we get L(n�1) by iteratively “multiplying” W via
Extend-Shortest-Paths

11 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Improving Running Time (2)

But we don’t need every L(m); we only want L(n�1)

E.g. if we want to compute 7

64, we could multiply 7 by itself 64
times, or we could square it 6 times

In our application, once we have a handle on L((n�1)/2), we can
immediately get L(n�1) from one call to
Extend-Shortest-Paths(L((n�1)/2), L((n�1)/2)

)

Of course, we can similarly get L((n�1)/2) from “squaring”
L((n�1)/4), and so on

Starting from the beginning, we initialize L(1)
= W , then compute

L(2)
= L(1) � L(1), L(4)

= L(2) � L(2), L(8)
= L(4) � L(4), and so on

What happens if n� 1 is not a power of 2 and we “overshoot” it?

How many steps of repeated squaring do we need to make?

What is time complexity of this new algorithm?
12 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example

Improving

Running Time

Floyd-Warshall

Algorithm

Faster-All-Pairs-Shortest-Paths(W)

n = number of rows of W

1 L(1) = W

2 m = 1

3 while m < n� 1 do

4 L(2m) = Extend-Shortest-Paths(L(m), L(m))

5 m = 2m

6 end

7 return L(m)

13 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Floyd-Warshall Algorithm

Shaves the logarithmic factor o↵ of the previous algorithm

As with previous algorithm, start by assuming that there are no
negative weight cycles; can detect negative weight cycles the same
way as before

Considers a di↵erent way to decompose shortest paths, based on the
notion of an intermediate vertex

If simple path p = hv1, v2, v3, . . . , v`�1, v`i, then the set of
intermediate vertices is {v2, v3, . . . , v`�1}

14 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Structure of Shortest Path

Again, let V = {1, . . . , n}, and fix i, j 2 V

For some 1  k  n, consider set of vertices Vk = {1, . . . , k}
Now consider all paths from i to j whose intermediate vertices come
from Vk and let p be the minimum-weight path from them

Is k 2 p?
1 If not, then all intermediate vertices of p are in Vk�1, and a SP from i

to j based on Vk�1 is also a SP from i to j based on Vk

2 If so, then we can decompose p into i
p1 k

p2 j, where p1 and p2 are
each shortest paths based on Vk�1

15 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Structure of Shortest Path (2)

16 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Recursive Solution

What does this mean?
It means that the shortest path from i to j based on Vk is either
going to be the same as that based on Vk�1, or it is going to go
through k
In the latter case, the shortest path from i to j based on Vk is going
to be the shortest path from i to k based on Vk�1, followed by the
shortest path from k to j based on Vk�1

Let matrix D(k)
=

⇣
d
(k)
ij

⌘
, where d

(k)
ij = weight of a shortest path

from i to j based on Vk:

d
(k)
ij =

(
wij if k = 0

min

⇣
d
(k�1)
ij , d

(k�1)
ik + d

(k�1)
kj

⌘
if k � 1

Since all SPs are based on Vn = V , we get d(n)ij = �(i, j) for all
i, j 2 V

17 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Floyd-Warshall(W)

n = number of rows of W

1 D(0) = W

2 for k = 1 to n do

3 for i = 1 to n do

4 for j = 1 to n do

5 d(k)ij = min
⇣
d(k�1)
ij , d(k�1)

ik + d(k�1)
kj

⌘

6 end

7 end

8 end

9 return D(n)

18 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Floyd-Warshall Example

Split into teams, and simulate Floyd-Warshall on this example:

19 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Transitive Closure

Used to determine whether paths exist between pairs of vertices

Given directed, unweighted graph G = (V,E) where V = {1, . . . , n},
the transitive closure of G is G⇤

= (V,E⇤
), where

E⇤
= {(i, j) : there is a path from i to j in G}

How can we directly apply Floyd-Warshall to find E⇤?

Simpler way: Define matrix T similarly to D:

t
(0)
ij =

⇢
0 if i 6= j and (i, j) 62 E
1 if i = j or (i, j) 2 E

t
(k)
ij = t

(k�1)
ij _

⇣
t
(k�1)
ik ^ t

(k�1)
kj

⌘

I.e. you can reach j from i using Vk if you can do so using Vk�1 or if
you can reach k from i and reach j from k, both using Vk�1

20 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Transitive-Closure(G)

allocate and initialize n⇥ n matrix T (0)

1 for k = 1 to n do

2 allocate n⇥ n matrix T (k)

3 for i = 1 to n do

4 for j = 1 to n do

5 t(k)ij = t(k�1)
ij _ t(k�1)

ik ^ t(k�1)
kj

6 end

7 end

8 end

9 return T (n)

21 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Example

22 / 23

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Floyd-Warshall

Algorithm

Structure of

Shortest Path

Recursive

Solution

Bottom-Up

Computation

Example

Transitive

Closure

Analysis

Like Floyd-Warshall, time complexity is o�cially ⇥(n3
)

However, use of 0s and 1s exclusively allows implementations to use
bitwise operations to speed things up significantly, processing bits in
batch, a word at a time

Also saves space

Another space saver: Can update the T matrix (and F-W’s D
matrix) in place rather than allocating a new matrix for each step
(Exercise 25.2-4)

23 / 23

	Introduction
	Shortest Paths and Matrix Multiplication
	Recursive Solution
	Bottom-Up Computation
	Example
	Improving Running Time

	Floyd-Warshall Algorithm
	Structure of Shortest Path
	Recursive Solution
	Bottom-Up Computation
	Example
	Transitive Closure

