Introduction

Lincoln Lincoln

o Similar to SSSP, but find shortest paths for all pairs of vertices
@ Given a weighted, directed graph G = (V, E)) with weight function

tnireducten Computer Science & Engineering 423/823 e w: E — R, find 6(u,v) for all (u,v) €V xV
Shortest P . . . Shortest Paths :
el Design and Analysis of Algorithms o @ One solution: Run an algorithm for SSSP |V| times, treating each
FlosdWarshall . ; el vertex in V' as a source
Algorithm Lecture 06 — All-Pairs Shortest Paths (Chapter 25) Alg o If no negative weight edges, use Dijkstra’s algorithm, for time
complexity of O([V|? + |V||E|) = O(|V|?) for array implementation,
O(|V||E|log |V|) if heap used
o If negative weight edges, use Bellman-Ford and get O(|V|?|E|) time
St§phen Scott) algorithm, which is O(|V|*) if graph dense
(Adapted from Vinodchandran N. Variyam) o Can we do better?
o Matrix multiplication-style algorithm: O(|V|>log|V|)
o Floyd-Warshall algorithm: ©(|V|?)
e Both algorithms handle negative weight edges
1/23 2/23
WEvelal Adjacency Matrix Representation ety Print-All-Pairs-Shortest-Path (11, 4, 5)
CSCE42:
@ Will use adjacency matrix representation
A @ Assume vertices are numbered: V = {1,2,...,n} Introduction
Sz P o Input to our algorithms will be n x n matrix W: St (il if i == j then
?v?LA\(lpllcaUun ?\?uu.'pf.cr;:m 1 ‘ print ¢
F hall 0 ifi=y Floyd-Warshall 2 else if mi; == NIL then
AUl wij = ¢ weight of edge (4,5) if (4,j) € E Aleorithm 3 | print "nopath from " i “to " j " exists”
i (i E 4 else
o if (i,7) & 5 PRINT-ALL-PAIRS-SHORTEST-PATH(II, 7, 74)
@ For now, assume negative weight cycles are absent . print j
o In addition to distance matrices L and D produced by algorithms,
can also build predecessor matrix II, where 7;; = predecessor of j on
a shortest path from i to j, or NIL if i = j or no path exists
o Well-defined due to optimal substructure property
3/23
WBvelal Shortest Paths and Matrix Multiplication W\Bvetal Recyrsive Solution

CSCE423/823 CSCE423/823

o Can exploit optimal substructure property to get a recursive

o Will maintain a series of matrices L(™ = ((l(]m)) where Zgn) = the

minimum weight of any path from i to j that uses at most m edges definition of £;;))
Introduction .) .) Introduction o To follow shortest path from i to j using at most m edges, either:
o Special case: £;;) =0 if i = j, oo otherwise . S
ths w Saths @ Take shortest path from i to j using < m — 1 edges and stay put, or
i et e 2 9 : @ Take shortest path from i to some k using < m — 1 edges and traverse
St St edge (K, j)
2 = min (677Y) min (é(m_]) +w)

‘E . ij ij ’ 1<k<n ik kj
Running Time el . PR .
F arshall 1 3 Floyd-Warshall @ Since wj; = 0 for all j, simplify to
Algorithm Algorithm

™ = min (wal) + Lb)

i 1<k<n \ ki

o If no negative weight cycles, then since all shortest paths have
<n —1 edges,
69 =00, 6) =8, 42 =7 4

.o gn=1) _ p(n) _ p(n41)
(i, 4) *[w:j *[ij *[v:j T

Extend-Shortest-Paths(

vei=y Bottum-Up Computation of L Matrices iSka
CSCE4: 3 CSCEA42:
Introduction H H H : H Introduction n = number of rows of L // This is L("O
. : o Start w!th weight matrix W and compute series of matrices Hese 1 create new n x n matrix L' // This will be L0+
5 aths . @ I,(n=1) Sh Pa)
,;mi‘] s IERRE) a":‘fh'\ 2 fori=1 ton do
o Core of the algorithm is a routine to compute L(™+1) given L(™) and 3 for j = 1 ton do
otl:mrUn w otl:mrun 4 tij = o0
ot))) .) ot forke1tond
o Start with L() = W, and iteratively compute new L matrices until = s orn= L ronco
-1 0 | € =min (¢, L + wiy)
Floyd-Warshall we get) N . sha 7 end
Algorithm o Why is LD == W7? ‘ 8 end
o Can we detect negative-weight cycles with this algorithm? How? 9 end
10 return L'
7/23 23
ety Slow-All-Pairs-Shortest-Paths(11) Nebiaska [SNETTI

n = number of rows of W
! " 1 LW =W
for m =2 ton —1do
L™ = EXTEND-SHORTEST-PATHS(L(™ ™1 W)

~

Computation
3

0 3 8 oo —4 0 3 8 2 —4

Runnin 4 end x 0 o0 1 7 30 41 7

Fl all s return L("~ 1 L= 4 0 0 o L= 4 05 1

i 2 00 =5 0 oo 2 -1 =5 0 -2

x o oo 6 0 8§ oo 1 6 0

0 3 -3 2 —4 0 1 -3 2 —4

30 —4 1 -1 30 -4 1 -1

D=7 4 05 1 W=7 4 05 3

2 -1 =5 0 -2 2 -1 -5 0 -2

8§ 5 1.6 0 8§ 5 1.6 0

Nebidska Improving Running Time (2)

=ty |mproving Running Time

Lincoln

(n=1)

cocEmE o But we don’t need every L(™); we only want L

cocEmE o What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?

o Can we do better? o E.g. if we want to compute 7%, we could multiply 7 by itself 64
Introduction o Note that if, in EXTEND-SHORTEST-PATHS, we change + to Introduction times, or we could square it 6 times
e s multiplication and min to -+, get matrix multiplication of L and W o In our application, once we have a handle on L(("=1)/2) e can

immediately get L("~1) from one call to
EXTEND-SHORTEST-Pars(L(("—1)/2) [((n=1)/2))
o Of course, we can similarly get L(("=1/2) from “squaring”

o If we let ® represent this “multiplication” operator, then
SLOW-ALL-PAIRS-SHORTEST-PATHS computes

e @ _) - _ w® T
Runanlm H L(-;) L(2) oW VV@ s Rm\mg ime L=/ and so on

Warshal @ — L@ ow - W , Floyd-Warshall . L L 1
:) lesiy o Starting from the beginning, we initialize L(!) = W, then compute

LO =W LW 1O =1@cL® & =1® & L&, and so on
o What happens if n — 1 is not a power of 2 and we “overshoot” it?
@ How many steps of repeated squaring do we need to make?
@ What is time complexity of this new algorithm?

L(n—l) — L(7L—2.)®W — Wn@l

o Thus, we get L") by iteratively “multiplying” W via
EXTEND-SHORTEST-PATHS

11/23

S Faster-All-Pairs-Shortest-Paths(11) WcEEY Floyd-Warshall Algorithm

CSCE: CsCl
Introduction Introduction

ot ‘P X o number of rows of W wt ’ ‘P @ Shaves the logarithmic factor off of the previous algorithm

aths = Sh aths
T 1 LW =w o o As with previous algorithm, start by assuming that there are no
2 mh:I 1 L Floyd-Warshall negative weight cycles; can detect negative weight cycles the same
) 3 while m <n — o Algorithm

o way as before

{l 4 L(™) = EXTEND-SHORTEST-PATHS(L(™) | L(™M)) ture of Y) .

Improving 5 m—2m o Considers a different way to decompose shortest paths, based on the

arshall 6 end p notion of an intermediate vertex
i 7 return L(M) x o If simple path p = (v1,v2,v3,...,0¢—1,v¢), then the set of
intermediate vertices is {v2, vs, ..., ve—1}

13/23 14 /23
WcElY Structure of Shortest Path WeeteY Structure of Shortest Path (2)
CSCEA42: CSCE423/823
Introduction o Again, let V. ={1,...,n}, and fixi,j € V Introduction) } o .) o
i‘j’ﬂ;‘(Paths o For some 1 < k < n, consider set of vertices V; = {17 o k‘} g:s,ﬂ;:\m) all intermediate vertices in {1,2,..., k —1} all intermediate vertices in {1,2,...,k — 1}
Multiplication Multiplication
- ™ o Now consider all paths from i to j whose intermediate vertices come . » o
Alg from V. and let p be the minimum-weight path from them Algorithm ! P2 0)
Shoseet Fath o lskep? Stncure of o

o @ If not, then all intermediate vertices of p are in Vj._y, and a SP from ¢ o -—
5'“““‘* to j based on V., is also a SP from 1 to ‘7, E)ased on Vi x p: all intermediate vertices in {1,2,..., k}
di @ If so, then we can decompose p into i £ k £3 j, where p; and po are
each shortest paths based on Vj,_;
15/23

e] Recursive Solution WCEEeY Floyd-Warshall(17)
CSCE423/823 ° What does thIS mean? CSCE423/823
o |t means that the shortest path from i to j based on Vj is either

[ntroduction going to be the same as that based on Vj,_1, or it is going to go [ntroduction 1 = number of rows of W
Sh Paths through k Shortest Paths. 1 DO =W
and Matri; and Matrix
Multiplcation @ In the latter case, the shortest path from i to j based on V}, is going Muiphcaton 2 for k=1 ton do
Flow Wartl to be the shortest path from i to k based on Vj_1, followed by the i for lzfolr ;"Z"ld':on do
st shortest path from k to j based on Vj,_ 5 d(]k) — min (d(f’” a%=n +d§f;—l))
oo o Let matrix D) = (r]ﬁf)) where dg.‘) = weight of a shortest path 6 end

o from i to j based on Vj: : o 7 end

. 8 end
PN Bl (k=1) S(k=1) | (k1) o o _return D"
g min (df 0, dff 0+ df V) k=1

Since all SPs are based on V,, =V, we get dEJ") = (i, j) for all
17/23 iL,jev

o hall Example

SEEEEY Split into teams, and simulate Floyd-Warshall on this example:

Example

et Transitive-Closure(G)

Introduction allocate and initialize n x n matrix 7(%)
Shortest Paths 1 fork =1 ton do
and x)
Multiplication 2 allocate n x n matrix T
Floyd-Warshall 3 for i =1 ton do
A m 3 for j =1 ton do
s f (k) _ y(k=1) \, y(k=1) \(k=1)
I 5) =ty Vi U Aty
6 end
on 7 end
Example
Transitive 8 end
Closure
9 return 7(")
21/23

Lincoln

Nebiaska INPVIVEES

CSCE423/823

Introduction o Like Floyd-Warshall, time complexity is officially ©(n?)
;;::\‘EZM; F:::S o However, use of 0s and 1s exclusively allows implementations to use
. . bitwise operations to speed things up significantly, processing bits in
Algorithm batch, a word at a time
e o Also saves space

@ Another space saver: Can update the 7" matrix (and F-W's D

e
o matrix) in place rather than allocating a new matrix for each step
© (Exercise 25.2-4)

Transitive Closure

Lincoln

e o Used to determine whether paths exist between pairs of vertices
o Given directed, unweighted graph G = (V, E) where V = {1,...,n},
Introduction the transitive closure of G is G* = (V, E*), where
Shortest Paths
and Matrc E* ={(i,) : there is a path from i to j in G}
A AL o How can we directly apply Floyd-Warshall to find E*?
n o Simpler way: Define matrix T similarly to D:

1O _ 0 ifi#jand (i,j) ¢ E
T 1 ifi=jor(i,j) € E

() _ 1) | (061 o 1)
=tV (1T Al Y)

o |.e. you can reach j from i using V}, if you can do so using Vj,_y or if
you can reach k from i and reach j from k, both using Vj_;

Lincoln

Nebiaska JENE mple

@

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Al

10 0 0 100 0 10 0 0
0o 1 11 0o 1 1 1 0o 1 11
©) — = @ =
r (() 110 r o110 r o 1 11
Lo 11 1o 11 1o 11
Closure.
10 0 0 10 0 0
0o 1 1 1 111
3) = “ —
T (() 11 r 1 11
111 1 11

