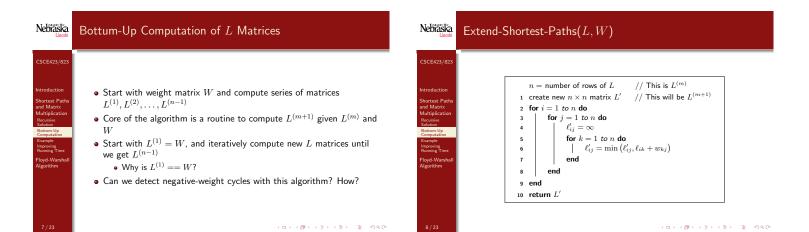
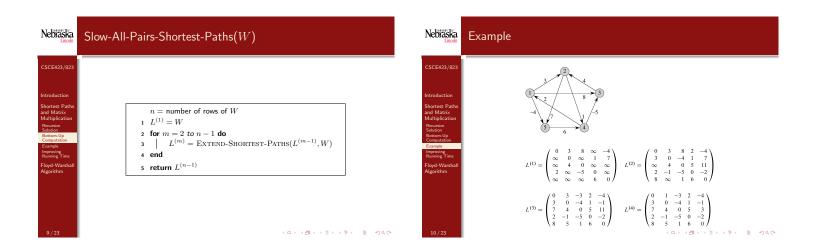
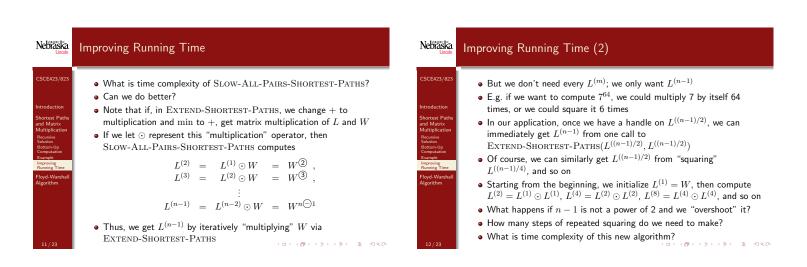
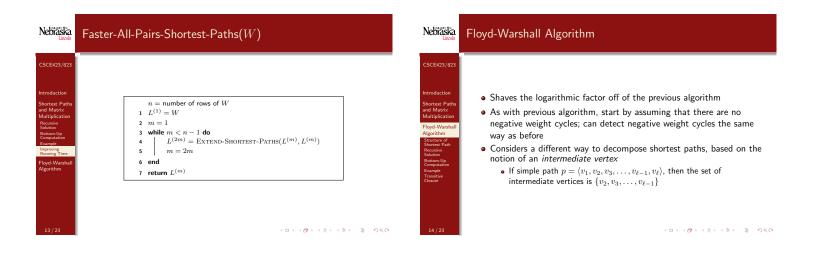


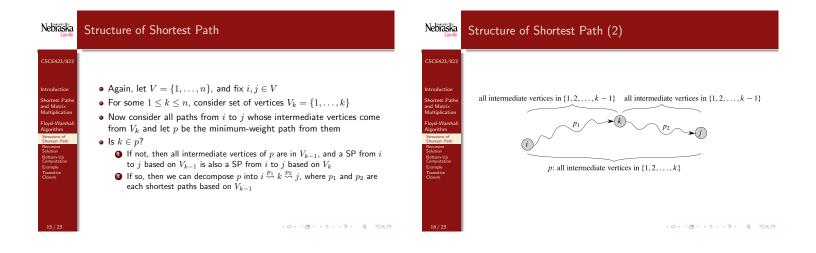
Nebräska Lincoln	Recursive Solution
CSCE423/823	• Can exploit optimal substructure property to get a recursive definition of $\ell_{ii}^{(m)}$
Introduction	• To follow shortest path from i to j using at most m edges, either:
Shortest Paths and Matrix Multiplication Recursive Solution	 ♦ Take shortest path from i to j using ≤ m - 1 edges and stay put, or ♦ Take shortest path from i to some k using ≤ m - 1 edges and traverse edge (k, j)
Bottom-Up Computation Example Improving Running Time	$\ell_{ij}^{(m)} = \min\left(\ell_{ij}^{(m-1)}, \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + w_{kj}\right)\right)$
Floyd-Warshall	• Since $w_{jj} = 0$ for all j , simplify to
Algorithm	$\ell_{ij}^{(m)} = \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)$
	 If no negative weight cycles, then since all shortest paths have
	$\leq n-1$ edges,
6/23	$\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij+1}^{(n+1)} = \mathcal{O}^{(n+1)} = \mathcal{O}^{(n+1)}$









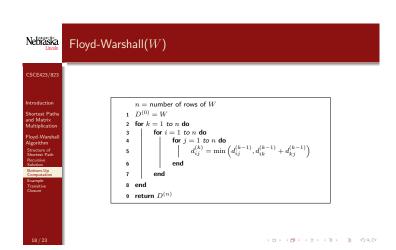


roductio

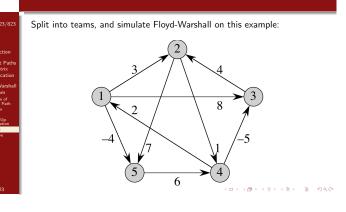
- What does this mean?
- It means that the shortest path from i to j based on V_k is either going to be the same as that based on $V_{k-1},$ or it is going to go through k
- In the latter case, the shortest path from i to j based on V_k is going to be the shortest path from i to k based on V_{k-1} , followed by the shortest path from k to j based on V_{k-1}
- Let matrix $D^{(k)} = (d_{ij}^{(k)})$, where $d_{ij}^{(k)} =$ weight of a shortest path from i to j based on V_k :

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

• Since all SPs are based on $V_n=V$, we get $d_{ij}^{(n)}=\delta(i,j)$ for all $i,j\in V$



Nebraska Floyd-Warshall Example



Nebraska Transitive Closure • Used to determine whether paths exist between pairs of vertices • Given directed, unweighted graph G = (V, E) where $V = \{1, \ldots, n\}$, the transitive closure of G is $G^* = (V, E^*)$, where $E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$ • How can we directly apply Floyd-Warshall to find E^* ? • Simpler way: Define matrix T similarly to D: $t_{ij}^{(0)} = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \text{ and } (i,j) \not \in E \\ 1 & \text{if } i = j \text{ or } (i,j) \in E \end{array} \right.$ $t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor \left(t_{ik}^{(k-1)} \land t_{kj}^{(k-1)} \right)$ $\bullet\,$ I.e. you can reach j from i using V_k if you can do so using V_{k-1} or if you can reach k from i and reach j from k, both using V_{k-1}

