
CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

2pt 0em

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 04 — Minimum-Weight Spanning Trees (Chapter 23)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

1 / 18

mailto:sscott@cse.unl.edu

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

Given a connected, undirected graph G = (V,E), a spanning tree is
an acyclic subset T ⊆ E that connects all vertices in V

T acyclic ⇒ a tree
T connects all vertices ⇒ spans G

If G is weighted, then T ’s weight is w(T) =
∑

(u,v)∈T w(u, v)

A minimum weight spanning tree (or minimum spanning tree,
or MST) is a spanning tree of minimum weight

Not necessarily unique

Applications: anything where one needs to connect all nodes with
minimum cost, e.g. wires on a circuit board or fiber cable in a
network

2 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

MST Example

3 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Kruskal’s Algorithm

Greedy algorithm: Make the locally best choice at each step

Starts by declaring each vertex to be its own tree (so all nodes
together make a forest)

Iteratively identify the minimum-weight edge (u, v) that connects
two distinct trees, and add it to the MST T , merging u’s tree with
v’s tree

4 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

MST-Kruskal(G,w)

A = ∅ ;

1 for each vertex v ∈ V do
2 Make-Set(v) ;

3 end

4 sort edges in E into nondecreasing order by weight w ;

5 for each edge (u, v) ∈ E, taken in nondecreasing order
do

6 if Find-Set(u) 6= Find-Set(v) then
7 A = A ∪ {(u, v)} ;

8 Union(u, v) ;

9

10 end

11 return A

5 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

MST-Kruskal(G,w), Part 2

Find-Set(u) returns a representative element from the set (tree)
that contains u

Union(u, v) combines u’s tree to v’s tree

These functions are based on the disjoint-set data structure

More on this later

6 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Example (1)

7 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Example (2)

8 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Example (3)

9 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Disjoint-Set Data Structure

Given a universe U = {x1, . . . , xn} of elements (e.g. the vertices in
a graph G), a DSDS maintains a collection S = {S1, . . . , Sk} of
disjoint sets of elements such that

Each element xi is in exactly one set Sj

No set Sj is empty

Membership in sets is dynamic (changes as program progresses)

Each set S ∈ S has a representative element x ∈ S
Chapter 21

10 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Disjoint-Set Data Structure (2)

DSDS implementations support the following functions:
Make-Set(x) takes element x and creates new set {x}; returns
pointer to x as set’s representative
Union(x, y) takes x’s set (Sx) and y’s set (Sy, assumed disjoint from
Sx), merges them, destroys Sx and Sy, and returns representative for
new set from Sx ∪ Sy

Find-Set(x) returns a pointer to the representative of the unique set
that contains x

Section 21.3: can perform d D-S operations on e elements in time
O(dα(e)), where α(e) = o(lg∗ e) = o(log e) is very slowly growing:

α(e) =


0 if 0 ≤ e ≤ 2
1 if e = 3
2 if 4 ≤ e ≤ 7
3 if 8 ≤ e ≤ 2047
4 if 2048 ≤ e ≤ 16512

11 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Introduction

The Algorithm

Example

Disjoint-Set
Data Structure

Analysis

Prim’s
Algorithm

Analysis of Kruskal’s Algorithm

Sorting edges takes time O(|E| log |E|)
Number of disjoint-set operations is O(|V |+ |E|) on O(|V |)
elements, which can be done in time
O((|V |+ |E|)α(|V |)) = O(|E|α(|V |)) since |E| ≥ |V | − 1

Since α(|V |) = o(log |V |) = O(log |E|), we get total time of
O(|E| log |E|) = O(|E| log |V |) since log |E| = O(log |V |)

12 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

Prim’s Algorithm

Greedy algorithm, like Kruskal’s

In contrast to Kruskal’s, Prim’s algorithm maintains a single tree
rather than a forest

Starts with an arbitrary tree root r

Repeatedly finds a minimum-weight edge that is incident to a node
not yet in tree

13 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

MST-Prim(G,w, r)

A = ∅ ;

1 for each vertex v ∈ V do
2 key[v] = ∞ ;

3 π[v] = nil ;

4 end

5 key[r] = 0 ;

6 Q = V ;

7 while Q 6= ∅ do
8 u = Extract-Min(Q) ;

9 for each v ∈ Adj[u] do
10 if v ∈ Q and w(u, v) < key[v] then
11 π[v] = u ;

12 key[v] = w(u, v) ;

13

14 end

15 end

14 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

MST-Prim(G,w, r), Part 2

key[v] is the weight of the minimum weight edge from v to any node
already in MST

Extract-Min uses a minimum heap (minimum priority queue)
data structure

Binary tree where the key at each node is ≤ keys of its children
Thus minimum value always at top
Any subtree is also a heap
Height of tree is blg nc
Can build heap on n elements in O(n) time
After returning the minimum, can filter new minimum to top in time
O(log n)
Based on Chapter 6

15 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

Example (1)

16 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

Example (2)

17 / 18

CSCE423/823

Introduction

Kruskal’s
Algorithm

Prim’s
Algorithm

Introduction

The Algorithm

Example

Analysis

Analysis of Prim’s Algorithm

Invariant: Prior to each iteration of the while loop:
1 Nodes already in MST are exactly those in V \Q
2 For all vertices v ∈ Q, if π[v] 6= nil, then key[v] <∞ and key[v] is

the weight of the lightest edge that connects v to a node already in
the tree

Time complexity:

Building heap takes time O(|V |)
Make |V | calls to Extract-Min, each taking time O(log |V |)
For loop iterates O(|E|) times

In for loop, need constant time to check for queue membership and
O(log |V |) time for decreasing v’s key and updating heap

Yields total time of O(|V | log |V |+ |E| log |V |) = O(|E| log |V |)
Can decrease total time to O(|E|+ |V | log |V |) using Fibonacci heaps

18 / 18

	Introduction
	Kruskal's Algorithm
	Introduction
	The Algorithm
	Example
	Disjoint-Set Data Structure
	Analysis

	Prim's Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

