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e Given a connected, undirected graph G = (V, E), a spanning tree is

Introduction an acyclic subset T' C E that connects all vertices in V'
Klrusk::;s o T acyclic = a tree
gorithm .
o e T connects all vertices = spans G
Algorithm o If G is weighted, then T"s weight is w(T") = >, ,)er w(u, v)

e A minimum weight spanning tree (or minimum spanning tree,
or MST) is a spanning tree of minimum weight

o Not necessarily unique
@ Applications: anything where one needs to connect all nodes with
minimum cost, e.g. wires on a circuit board or fiber cable in a
network
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Introduction

N o Greedy algorithm: Make the locally best choice at each step

e Starts by declaring each vertex to be its own tree (so all nodes

D et together make a forest)

Data Structure

Aress o lteratively identify the minimum-weight edge (u,v) that connects
Algorshm two distinct trees, and add it to the MST T, merging u's tree with

V's tree
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A=0;

Introduction 1 for each vertexv € V do
Kruckal's 2 | MAKE-SET(v) ;
Algorithm 3 end
Introduction
The Mgt 4 sort edges in E into nondecreasing order by weight w ;
B';#Z"Eilsuiiure 5 for each edge (u,v) € E, taken in nondecreasing order
Analysis do
Prim's 6 if FIND-SET(u) # FIND-SET(v) then
Algorithm 7 A=AU {(u7 ’U)} :

8 UNION(u, v) ;

9

10 end

11 return A
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Introduction

Kruskal's

Algorithm e FIND-SET(u) returns a representative element from the set (tree)

Introduction

The Algorithm that contains u

Example
Disjoint-Set

sioEie e @ UNION(u,v) combines u's tree to v's tree

Analysis

Prim's @ These functions are based on the disjoint-set data structure
Algorithm .
@ More on this later
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Introduction e Given a universe U = {z1,...,x,} of elements (e.g. the vertices in

K[g“jf;,';; a graph G), a DSDS maintains a collection § = {51, ..., Sk} of
Introduction disjoint sets of elements such that

o Each eleme-nt x; is in exactly one set S

mcture o No set S; is empty

Prim's @ Membership in sets is dynamic (changes as program progresses)
gorithm

@ Each set S € S has a representative element x € S
@ Chapter 21

10/18
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Disjoint-Set Data Structure (2)

e DSDS implementations support the following functions:
o MAKE-SET(z) takes element x and creates new set {z}; returns
pointer to x as set's representative
o UNION(z,y) takes z's set (S;) and y's set (S, assumed disjoint from
S.), merges them, destroys S, and S,,, and returns representative for
new set from S, U S,
o FIND-SET(z) returns a pointer to the representative of the unique set
that contains x
@ Section 21.3: can perform d D-S operations on e elements in time

O(da(e)), where a(e) = o(lg* e) = o(loge) is very slowly growing:

0 fo<e<?2
1 ife=3
ale) =1 2 if4<e<T7
3 if 8 <e <2047
4 if 2048 < e < 16°12
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Introduction

Rskars. @ Sorting edges takes time O(|E|log |E])

e e Number of disjoint-set operations is O(|V |+ |E|) on O(|V])
e elements, which can be done in time

E O((VI+ BN (VD) = O(Ela(IV)) since |E] > V] -1
Aeorithm e Since a(|V]) = o(log |V|) = O(log |E|), we get total time of

O(|E|log| E|) = O(|E| log|V']) since log | E| = O(log |V')

12/18
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Kruskal's @ Greedy algorithm, like Kruskal's

Algorithm

Prim'’s @ In contrast to Kruskal's, Prim's algorithm maintains a single tree
Algorithm

rather than a forest

Introduction
The Algorithm

Example @ Starts with an arbitrary tree root r

Analysis

@ Repeatedly finds a minimum-weight edge that is incident to a node
not yet in tree

13/18
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) A=0;

Eosucicn 1 for each vertex v € V do

Kruskal's 2 key[v] = oo ;

Algorithm 3 w[v] = NIL ;

Prim’ 4 end

rms

Algorithm 5 keylr] =0;

Introduction 6 Q = Vi

The Algorithm 7 while Q # 0 do

Example 8 u = EXTRACT-MIN(Q) ;

Analysis 9 for each v € Adj[u] do
10 if v € Q and w(u,v) < key[v] then
11 w[v] = u;
12 key[v] = w(u,v) ;
13
14 end
15 end

14 /18
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@ key[v] is the weight of the minimum weight edge from v to any node

Introduction already in MST

Kruskal” .« . . ..

Algu;i:hzw o EXTRACT-MIN uses a minimum heap (mlnlmum prlorlty qUeUe)
Prim's data structure

Algorithm

o Binary tree where the key at each node is < keys of its children
o Thus minimum value always at top

o Any subtree is also a heap

o Height of tree is |lgn|
]
)

Introduction
The Algorithm
Example
Analysis

Can build heap on n elements in O(n) time
After returning the minimum, can filter new minimum to top in time
O(logn)

o Based on Chapter 6

15/18
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Analysis of Prim's Algorithm

@ Invariant: Prior to each iteration of the while loop:

© Nodes already in MST are exactly those in V' \ @

@ For all vertices v € Q, if w[v] # NIL, then key[v] < oo and key[v] is
the weight of the lightest edge that connects v to a node already in
the tree

@ Time complexity:

o Building heap takes time O(|V])
o Make |V] calls to EXTRACT-MIN, each taking time O(log|V])
o For loop iterates O(|E|) times
@ In for loop, need constant time to check for queue membership and
O(log |V|) time for decreasing v's key and updating heap
Yields total time of O(|V|log|V| + |E|log|V]) = O(|E|log |V])
Can decrease total time to O(|E| + |V|log |V|) using Fibonacci heaps
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