Nebiaska

Lincoln

CSCE423/823

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Introduction

Types of
Graphs

Representations Lecture 03 — Elementary Graph Algorithms (Chapter 22)

of Graphs

Elementary
Graph
Algorithms

Applications Stephen SCOtt
(Adapted from Vinodchandran N. Variyam)

1/29

mailto:sscott@cse.unl.edu

Wevedal |ntroduction

Lincoln

CSCE423/823

Introduction

Types of @ Graphs are abstract data types that are applicable to numerous
Graphs problems
Representations

o Can capture entities, relationships between them, the degree of the
relationship, etc.

of Graphs
Elementary
Graph
Algorithms @ This chapter covers basics in graph theory, including representation,

Applications and algorithms for basic graph-theoretic problems

@ We'll build on these later this semester

N
©

Ne‘BﬂvERSWV]or

Lincoln

Types of Graphs

CSCE423/823

Introduction e A (simple, or undirected) graph G = (V, E) consists of V, a
Tl nonempty set of vertices and E a set of unordered pairs of distinct

vertices called edges

Representations
of Graphs

Elmetary V={A.B.C.D.E}

Q‘ ()
. ' ‘\ E={ (A.D)(AE)(B D),
& B Yy BELCDICE}

Nebiaska Types of Graphs (2)

Lincoln

CSCE423/823

e A directed graph (digraph) G = (V, E)) consists of V, a nonempty
set of vertices and E a set of ordered pairs of distinct vertices called

Introduction edges

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Applications

Nebiaska Types of Graphs (3)

Lincoln

CSCE423/823

o A weighted graph is an undirected or directed graph with the
additional property that each edge e has associated with it a real
number w(e) called its weight

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Applications

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations|
of Graphs
Adjacency List

Adjacency
Matrix

Elementary
Graph
Algorithms

Applications

Representations of Graphs

@ Two common ways of representing a graph: Adjacency list and
adjacency matrix

e Let G = (V, E) be a graph with n vertices and m edges

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs
Adjacency List

Adjacency
Matrix

Elementary
Graph
Algorithms

Applications

Adjacency List

@ For each vertex v € V, store a list of vertices adjacent to v
e For weighted graphs, add information to each node

@ How much is space required for storage?

@—=((o d

@—=G—((e

@b ({4

Nebiaska Adjacency Matrix

Lincoln

CSCE423/823
@ Use an n x n matrix M, where M(i,7) = 1 if (i,7) is an edge, 0
otherwise

Introduction

Types of o If G weighted, store weights in the matrix, using oo for non-edges
Graphs A i
@ How much is space required for storage?

Representations
of Graphs
Adjacency List

Adjacency
Matrix

Elementary
Graph
Algorithms

Applications

O = —=OP
Hoeloeleloyey
—_— OO~
—_ OO = O =~
O = —_ O

0000 e

Weci=Y Breadth-First Search (BFS)

Lincoln

CSCE423/823

eroduction e Given a graph G = (V, E) (directed or undirected) and a source node
Types of s € V, BFS systematically visits every vertex that is reachable from s
Graphs . .

. - @ Uses a queue data structure to search in a breadth-first manner
epresentations

LR @ Creates a structure called a BFS tree such that for each vertex
R v € V, the distance (number of edges) from s to v in tree is the
Algorithms H

Brsit i shortest path in G

Dept-Fis @ Initialize each node’s color to WHITE

Applications @ As a node is visited, color it to GRAY (= in queue), then BLACK (=

finished)

NeBWERSWV] OF

Lincoln

CSCE423/823

for each vertex u € V \ {s} do
1 color|[u] = WHITE
2 dlu] = oo
Introduction 3 7[u] = NIL
4 d
Types of 5 e-nl Tel —
Graphs color[s] = GRAY
6 ds]=0
Representations 7 wls] =N
of Graphs 8 Q=20
Elementary 9 ENQUEUE(Q), s)
Graph 10 while Q # 0 do
Algorithms 11 u = DEQUEUE(Q)
Breadth-First 12 for each v € Adj[u] do
Sealchil 13 if color[v] == WHITE then
gepth'F"S‘ 14 color[v] = GRAY
earch
15 dlv] =d[u] +1
Applications 16 7] = u
17 ENQUEUE(Q, v)
18
19 end
20 color[u] = BLACK
21 end

Nebiaska SY=S Example

Lincoln
CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Breadth-First
Search

Depth-First
Search

Applications

Nebiaska =T=S Example (2)

Lincoln

CSCE423/823

Introduction

Types of
Graphs

() 0
Representations 3
of Graphs -

Elementary
Graph
Algorithms

Breadth-First (i) 0 0
Search

Depth-First
Search v b X v

Applications

12 /29

W\evevlsl BES Properties

Lincoln

CSCE423/823

Introduction . . .

Hoductie e What is the running time?

Types of . . .

Graphs e Hint: How many times will a node be enqueued?

R @ After the end of the algorithm, d[v] = shortest distance from s to v

Elementary = Solves unweighted shortest paths

Graph o Can print the path from s to v by recursively following 7 [v], w[mr[v]],
gorithms

Breadih-First etc.

ety i e If d[v] == oo, then v not reachable from s

Applications = SOlVeS reachability

13/29

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Breadth-First
Search
Depth-First
Search

Applications

14 /29

Depth-First Search (DFS)

@ Another graph traversal algorithm

@ Unlike BFS, this one follows a path as deep as possible before
backtracking

@ Where BFS is “queue-like,” DFS is “stack-like”

@ Tracks both “discovery time” and “finishing time" of each node,
which will come in handy later

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Breadth-First
Search
Depth-First
Search

Applications

for each vertex u € V do
color[u] = WHITE

m[u] = NIL
end
time =0
for each vertex u € V do

if color[u] == WHITE then
| DFS-VIsIT(u)

end

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Breadth-First
Search
Depth-First
Search

Applications

DFS-Visit(u)

10

color[u] = GRAY
time = time + 1
d[u] = time
for each v € Adj[u] do
if color[v] == WHITE then
wlv] =u
DFS-VIsIT(v)

end
color[u] = BLACK
flu] = time = time + 1

Nebiaska B]=IS Example

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary

Graph

Algorithms
Breadth-First
Search
Depth-First
Search

Applications

Nebiaska IEpY=S Example (2)

Lincoln
CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Breadth-First
Search
Depth-First
Search

Applications

18 /29

Nebiaska B]=IS Properties

Lincoln

CSCE423/823

Introduction

Types of

Graphs e Time complexity same as BFS: O(|V| + |E)

Representations @ Vertex u is a proper descendant of vertex v in the DF tree iff

of Graphs

Elementarv d[v] < d[u] < f[u] < f[v]

Craph = Parenthesis structure: If one prints “(u” when discovering u and
orithms - . . 3

Breoth e “u)" when finishing u, then printed text will be a well-formed

Farst parenthesized sentence

Search

Applications

19/29

Nebiaska IEpY=S Properties (2)

Lincoln

CSCE423/823

o Classification of edges into groups
o A tree edge is one in the depth-first forest

Introduction o A back edge (u,v) connects a vertex u to its ancestor v in the DF
Types of tree (includes self-loops)
Graphs o A forward edge is a nontree edge connecting a node to one of its DF
Representations tree descendants
of Graphs L.

o A cross edge goes between non-ancestral edges within a DF tree or
Elementary
Graph between DF trees
Algorithms

o See labels in DFS example

Breadth-First
Search

Depth it @ Example use of this property: A graph has a cycle iff DFS discovers a
back edge (application: deadlock detection)
@ When DFS first explores an edge (u,v), look at v's color:

Applications

e color[v] == WHITE implies tree edge
e color[v] == GRAY implies back edge
e color[v] == BLACK implies forward or cross edge

20/29

WCvet=R A pplication: Topological Sort

Lincoln

CSCE423/823

A directed acyclic graph (dag) can represent precedences: an edge (z,y)
implies that event/activity x must occur before y

Introduction

11/16 (undershorts

(socks) 17/18

Types of
Graph
aphs V WatCh 9/10
Representations| :
of Graphs ShOCS 13/14
Elementary

Graph
Algorithms

Applications

Topological Sort

Strongly
Connected
Components

21/29

NeBWERSWV] OF

Lincoln

Application: Topological Sort (2)

CSCE423/823

Introduction

Types of

Graphs A topological sort of a dag G is an linear ordering of its vertices such
R i
Wrbeaale that if G contains an edge (u,v), then u appears before v in the ordering
Elementary 3 —

Graph r< A
TEORORCT
Applications 17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4
Topological Sort

Strongly

Connected

Components

N
©

NeBWERSWV] OF

Lincoln

Topological Sort Algorithm

CSCE423/823

@ Call DFS algorithm on dag G
Introduction
Sa—— @ As each vertex is finished, insert it to the front of a linked list
creehs © Return the linked list of vertices

Representations
of Graphs

Elementary

Graph @ Thus topological sort is a descending sort of vertices based on DFS

Algorithms
finishing times
Applications .
Topological Sort @ Why does it work?
Strongly o . . .
e o When a node is finished, it has no unexplored outgoing edges; i.e. all
its descendant nodes are already finished and inserted at later spot in
final sort

23/29

NeBWERS\YV]or

Lincoln

Application: Strongly Connected Components

CSCE423/823

Given a directed graph G = (V, E), a strongly connected component
(SCC) of G is a maximal set of vertices C' C V' such that for every pair of

Introduction vertices u,v € C' u is reachable from v and v is reachable from u
Types of

Graphs a b

c d
Representations
Elementary
Graph

Algorithms

Applications
Topological Sort

Strongly
Connected
Components

e

What are the SCCs of the above graph?

24 /29

Ne‘BWERS\YV]or

Lincoln

Transpose Graph

e @ Our algorithm for finding SCCs of G depends on the transpose of
G, denoted GT

o Gl is simply G with edges reversed
Types of
Gl e Fact: GT and G have same SCCs. Why?

Representations
of Graphs

Elementary a b Cc d
Graph
Algorithms

Introduction

Applications
Topological Sort

Strongly
Connected
Components

25/29 € f § h

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Types of
Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Applications
Topological Sort

Strongly
Connected
Components

N

SCC Algorithm

@ Call DFS algorithm on G
@ Compute ell

© Call DFS algorithm on ar, looping through vertices in order of
decreasing finishing times from first DFS call

@ Each DFS tree in second DFS run is an SCC in G

W\Evete SCC Algorithm Example

CSCE423/823

After first round of DFS:

Introduction

a b c d
Types of

o @ @ @_@
Representations

of Graphs

Elementary

Graph
Algorithms

Applications
Topological Sort)
Strongly

Connected
Components e

Which node is first one to be visited in second DFS?

hect=l SCC Algorithm Example (2)

CSCE423/823

After second round of DFS:

Introduction

Types of a b C d

Graphs

Representations
of Graphs

Elementary
Graph
Algorithms

Applications

Topological Sort
Strongly
Connected
Components

WEvete SCC Algorithm Analysis

Lincoln

CSCE423/823

Introduction @ What is its time complexity?
L @ How does it work?
—— @ Let x be node with highest finishing time in first DFS
i (Certie @ nGT, s component C' has no edges to any other component
Canentery (Lemma 22.14), so the second DFS's tree edges define exactly z's
Algorithms component
Applications © Now let 7/ be the next node explored in a new component C’
T @ The only edges from C’ to another component are to nodes in C, so
Components the DFS tree edges define exactly the component for z’

@ And soon...

29/29

	Introduction
	Types of Graphs
	Representations of Graphs
	Adjacency List
	Adjacency Matrix

	Elementary Graph Algorithms
	Breadth-First Search
	Depth-First Search

	Applications
	Topological Sort
	Strongly Connected Components

