Introduction

Computer Science & Engineering 423/823

. . . Introduction
Design and Analysis of Algorithms — o Graphs are abstract data types that are applicable to numerous
:) S problems
—_— 2

Lesima (8 — Blmeitery @esth Al (@i 2 e o Can capture entities, relationships between them, the degree of the
ety relationship, etc
¥ @ This chapter covers basics in graph theory, including representation,

Stephen Scott Applications and algorithms for basic graph-theoretic problems

(Adapted from Vinodchandran N. Variyam)

@ We'll build on these later this semester

ESetlEY Types of Graphs (2) el Types of Graphs (3)

o A directed graph (digraph) G = (V, E) consists of V, a nonempty
set of vertices and E a set of ordered pairs of distinct vertices called
edges

@ A weighted graph is an undirected or directed graph with the
additional property that each edge e has associated with it a real
number w(e) called its weight

3

Introduction

Types of Types of
Graphs Graphs

Applications

AN

Types of Graphs

o A (simple, or undirected) graph G = (V, E) consists of V, a
g:;;:' nonempty set of vertices and E a set of unordered pairs of distinct
i vertices called edges

V={A,B,CDE}

Q‘ ()
"‘\ E={ (AD)(AE)(BD),
&Ny EBCDC

Representations of Graphs

Reprsentaions o Two common ways of representing a graph: Adjacency list and
7 715 adjacency matrix

e Let G = (V, E) be a graph with n vertices and m edges

Adjacency List Adjacency Matrix Breadth-First Search (BFS)

Lincon

Lincan

.) . @ Use an n x n matrix M, where M (i, j) = 1 if (i,7) is an edge, 0
o For each vertex v € V/, store a list of vertices adjacent to v

st - > » otherwise R o Given a graph G = (V, E) (directed or undirected) and a source node
o For weighted graphs, add information to each node o If G weighted, store weights in the matrix, using oo for non-edges - s € V, BFS systematically visits every vertex that is reachable from s
@ How much is space required for storage? o How much is space required for storage?) @ Uses a queue data structure to search in a breadth-first manner

o Creates a structure called a BFS tree such that for each vertex
v €V, the distance (number of edges) from s to v in tree is the

® —=0-GQ

e a abcde shortest path in G
b D@ b (1) (1) (1) (1) (1) o Initialize each node’s color to WHITE
- 10011 ° As.a node is visited, color it to GRAY (=> in queue), then BLACK (=
@ = 37 di1o0101 finished)
el01 110

BFS Example el BFS Example (2)

for each vertex u € V' \ {s} do

1 color{u] = whITE
2 d[u] = o0

3 wlu] = N

4 end

5 colorfs] = arav

6 dis] =0

7 wls] =~

8

10 while Q # 0 do

1 u = DEQUEUE(Q)
2 for each v € Adj[u] do

13 if color(v] == WiITE then
14 color{v] = GraY
15 dlv] = dfu] +1

16 o) = w

17 ENQUEVE(Q, v)

end
2 color{u] = BLACK
21 end

BFS Properties Depth-First Search (DFS)

sl DFS(G)

Lincan

for each vertexu € V do
color[u] = WHITE

Introduction

@ What is the running time?

@ Another graph traversal algorithm

@ Hint: How many times will a node be enqueued? 2 wlu] = NIL
o After the end of the algorithm, d[v] = shortest distance from s to v o Unlike BF.S' this one follows a path as deep as possible before 3 end
= Solves unweighted shortest paths backtracking a time =0

o Can print the path from s to v by recursively following 7[v], [[v]], @ Where BFS is “queue-like,” DFS is “stack-like”

for each vertexu € V do

ete. @ Tracks both “discovery time” and “finishing time” of each node, 6 if color[u] == WHITE then
o If d[v] == o0, then v not reachable from s which will come in handy later 7 | DFS-Visir(u)
= Solves reachability Applications 8
9 end

DFS-Visit(u) &y DFS Example et DFS Example (2)
ceq3/a23

color[u] = GRAY
1 time = time + 1 L D~ -y U - U - " @] " I 3 . L D o> i D o
2 dfu] = time i Y v/ L b L1, ' . i ! 2 I:/ | " | L I: L
3 for each v € Adj[u] do I &S G T R N R D= =€ . =€ . e
4 if color(v] WHITE then ¢ ® ® © @ ’ 0 [® a
; il = u o g O =g g g b 0 - & @ :
o DFS-VisiT(v) B | N | . g e] v] e v) e
o end e e e e - e e e
9 color[u] = BLACK
1 flu] = time = time + 1

DFS Properties DFS Properties (2)

isia 2=y Application: Topological Sort

o Classification of edges into groups
o A tree edge is one in the depth-first forest
o A back edge (u,v) connects a vertex u to its ancestor v in the DF
tree (includes self-loops)
o A forward edge is a nontree edge connecting a node to one of its DF
tree descendants
o A cross edge goes between non-ancestral edges within a DF tree or
between DF trees
o See labels in DFS example
@ Example use of this property: A graph has a cycle iff DFS discovers a
back edge (application: deadlock detection)
@ When DFS first explores an edge (u,v), look at v's color:
o color[v] WHITE implies tree edge
o color[v] GRAY implies back edge
o color[v] == BLACK implies forward or cross edge

A directed acyclic graph (dag) can represent precedences: an edge (z,y)
implies that event/activity 2 must occur before y
Introduction
o Time complexity same as BFS: O(|V| + |E|)
o Vertex u is a proper descendant of vertex v in the DF tree iff
dlv] < d[u] < flu] < flv]
= Parenthesis structure: If one prints “(u" when discovering u and
“u)" when finishing u, then printed text will be a well-formed
parenthesized sentence

9/10

Application: Topological Sort (2) el Topological Sort Algorithm Application: Strongly Connected Components

Lincon

Given a directed graph G = (V, E), a strongly connected component
(SCC) of G is a maximal set of vertices C C V such that for every pair of
vertices u, v € C u is reachable from v and v is reachable from u

a b c d

Gnd—>(11e=—=C0l — C89)

@ Call DFS algorithm on dag G
@ As each vertex is finished, insert it to the front of a linked list
@ Return the linked list of vertices

A topological sort of a dag G is an linear ordering of its vertices such
that if G contains an edge (u,v), then u appears before v in the ordering

— - = —
@@ i @ Thus topological sort is a descending sort of vertices based on DFS
25 314

1718 e s e o s 67 finishing times
@ Why does it work?
o When a node is finished, it has no unexplored outgoing edges; i.e. all
its descendant nodes are already finished and inserted at later spot in
final sort

e f g h

What are the SCCs of the above graph?

Lincan

Introduction

Strongly
Comacted
Components

Comacted
Components

Transpose Graph

@ Our algorithm for finding SCCs of G depends on the transpose of

G, denoted GT
o GTis simply G with edges reversed

o Fact: GT and G have same SCCs. Why?

a b

a b

C;

SCC Algorithm

@ Call DFS algorithm on G
@ Compute el

@ Call DFS algorithm on GT, looping through vertices in order of
decreasing finishing times from first DFS call

Q@ Each DFS tree in second DFS run is an SCC in G

aly
nected

St
Comnt
Componenis

SCC Algorithm Analysis

o What is its time complexity?
@ How does it work?
@ Let x be node with highest finishing time in first DFS
@ In GT, 2’s component C' has no edges to any other component
(Lemma 22.14), so the second DFS's tree edges define exactly z's

component
@ Now let 2’ be the next node explored in a new component C’
] @ The only edges from C’ to another component are to nodes in C, so
i the DFS tree edges define exactly the component for a
@ Andsoon...

SCC Algorithm Example

Lincon

After first round of DFS:
a b c d

Gnd—>(1ne=—=Ciol— C89)

E
Comected
Components e

e €W ED. . ED»
f g h

Which node is first one to be visited in second DFS?

