

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 01 — Medians and Order Statistics (Chapter 9)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Finding Minimum and Maximum

- ullet Given an array A of n distinct numbers, the ith **order statistic** of A is its ith smallest element
 - $i = 1 \Rightarrow \mathsf{minimum}$
 - $i = n \Rightarrow \mathsf{maximum}$
 - $i = \lfloor (n+1)/2 \rfloor \Rightarrow$ (lower) median
- E.g. if A = [8, 5, 3, 10, 4, 12, 6] then min = 3, max = 12, median = 6, 3rd order stat = 5
- **Problem:** Given array A of n elements and a number $i \in \{1, ..., n\}$, find the ith order statistic of A
- There is an obvious solution to this problem. What is it? What is its time complexity?
 - Can we do better? What if we only focus on i = 1 or i = n?

Finding Minimum

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

```
1 small = A[1]

2 for i=2 to n do

3 if small > A[i] then

4 small = A[i]

5 end

6 return small
```

Algorithm 1: Minimum(A, n)

Efficiency of Minimum(A)

CSCE423/823

Introduction

Finding Minimum and Maximum

- Loop is executed n-1 times, each with one comparison
 - \Rightarrow Total n-1 comparisons
- Can we do better?
- ullet Lower Bound: Any algorithm finding minimum of n elements will need at least n-1 comparisons
 - ullet Proof of this comes from fact that no element of A can be considered for elimination as the minimum until it's been compared at least once

Correctness of Minimum(A)

CSCE423/823

Introduction

Finding Minimum and Maximum

- Observe that the algorithm always maintains the **invariant** that at the end of each loop iteration, small holds the minimum of $A[1\cdots i]$
 - Easily shown by induction
- Correctness follows by observing that i == n before **return** statement

Simultaneous Minimum and Maximum

CSCE423/823

Introduction

Finding Minimum and Maximum

- ullet Given array A with n elements, find both its minimum and maximum
- What is the obvious algorithm? What is its (non-asymptotic) time complexity?
- Can we do better?

Simultaneous Minimum and Maximum

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

```
1 large = max(A[1], A[2])
2 small = min(A[1], A[2])
 3 for i = 2 to |n/2| do
        large = \max(large, \max(A[2i-1], A[2i]))
4
        small = \min(small, \min(A[2i-1], A[2i]))
5
   end
   if n is odd then
        large = \max(large, A[n])
        small = \min(small, A[n])
10 return (large, small)
```

Algorithm 2: MinAndMax(A, n)

Explanation of MinAndMax

CSCE423/823

Introduction

Finding Minimum and Maximum

- Idea: For each pair of values examined in the loop, compare them directly
- \bullet For each such pair, compare the smaller one to small and the larger one to large
- $\bullet \ \, \mathsf{Example:} \ \, A = [8, 5, 3, 10, 4, 12, 6]$

Efficiency of MinAndMax

CSCE423/823

Introduction

Finding Minimum and Maximum

- How many comparisons does MinAndMax make?
- Initialization on Lines 1 and 2 requires only one comparison
- ullet Each iteration through the loop requires one comparison between A[2i-1] and A[2i] and then one comparison to each of large and small, for a total of three
- Lines 8 and 9 require one comparison each
- Total is at most $1+3(\lfloor n/2\rfloor-1)+2\leq 3\lfloor n/2\rfloor$, which is better than 2n-3 for finding minimum and maximum separately

Selection of the *i*th Smallest Value

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm
Pseudocode
Example
Time Complexity
Master Theorem

- \bullet Now to the general problem: Given A and i, return the $i{\rm th}$ smallest value in A
- Obvious solution is sort and return ith element
- Time complexity is $\Theta(n \log n)$
- Can we do better?

Selection of the ith Smallest Value (2)

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode Example Time Complexity Master Theorem

- New algorithm: Divide and conquer strategy
- Idea: Somehow discard a constant fraction of the current array after spending only linear time
 - If we do that, we'll get a better time complexity
 - More on this later
- Which fraction do we discard?

Procedure Select

CSCE423/823

```
Introduction
```

Finding Minimum and Maximum

Selection of Arbitrary Order Statist

Order Statistic

Overview Algorithm

Pseudocode

```
1 if p = r then
2 return A[p]
3 q = \operatorname{Partition}(A, p, r) \ / \ \text{Like Partition in Quicksort}
4 k = q - p + 1 \ / \ \text{Size of } A[p \cdots q]
5 if i = k then
6 return A[q] \ / \ \text{Pivot value is the answer}
7 else if i < k then
8 return Select(A, p, q - 1, i) \ / \ \text{Answer is in left subarray}
9 else
10 return Select(A, q + 1, r, i - k) \ / \ \text{Answer is in right subarray}
```

Algorithm 3: Select(A, p, r, i), which returns ith smallest element from $A[p \cdots r]$

What is Select Doing?

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode

Example Time Complexity Master Theorem

- Like in Quicksort, Select first calls Partition, which chooses a **pivot** element q, then reorders A to put all elements < A[q] to the left of A[q] and all elements > A[q] to the right of A[q]
- E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is A' = [1, 4, 2, 3, 5, 7, 8, 6]
- If A[q] is the element we seek, then return it
- If sought element is in left subarray, then recursively search it, and ignore right subarray
- If sought element is in right subarray, then recursively search it, and ignore left subarray

Partitioning the Array

CSCE423/823

```
Introduction
```

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode Example

Time Complexity Master Theorem

```
\begin{array}{lll} \mathbf{1} & x = \mathsf{ChoosePivotElement}(A,p,r) \ // \ \mathsf{Returns} \ \mathsf{index} \ \mathsf{of} \ \mathsf{pivot} \\ \mathbf{2} & \mathsf{exchange} \ A[x] \ \mathsf{with} \ A[r] \\ \mathbf{3} & i = p-1 \\ \mathbf{4} & \mathsf{for} \ j = p \ \mathsf{to} \ r-1 \ \mathsf{do} \\ \mathbf{5} & \mathsf{if} \ A[j] \leq A[r] \ \mathsf{then} \\ \mathbf{6} & i = i+1 \\ \mathbf{7} & \mathsf{exchange} \ A[i] \ \mathsf{with} \ A[j] \\ \mathbf{8} & \mathsf{end} \\ \mathbf{9} & \mathsf{exchange} \ A[i+1] \ \mathsf{with} \ A[r] \\ \mathbf{10} & \mathsf{return} \ i+1 \\ \end{array}
```

Algorithm 4: Partition(A, p, r), which chooses a pivot element and partitions $A[p \cdots r]$ around it

Partitioning the Array: Example (Fig 7.1)

CSCE423/823

Introduction

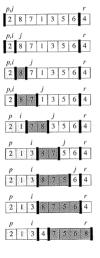
Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm
Overview

Algorithm Pseudocode Example

Time Complexity Master Theorem



Compare each element A[j] to x (= 4) and swap with A[i] if $A[j] \leq x$

Choosing a Pivot Element

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode Example

Time Complexity

- Choice of pivot element is critical to low time complexity
- Why?
- ullet What is the best choice of pivot element to partition $A[p\cdots r]$?

Choosing a Pivot Element (2)

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode Example

- Want to pivot on an element that it as close as possible to being the median
- Of course, we don't know what that is
- Will do median of medians approach to select pivot element

Median of Medians

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm

Pseudocode Example

- Given (sub)array A of n elements, partition A into $m = \lfloor n/5 \rfloor$ groups of 5 elements each, and at most one other group with the remaining $n \mod 5$ elements
- Make an array $A'=[x_1,x_2,\ldots,x_{m+1}]$, where x_i is median of group i, found by sorting (in constant time) group i
- \bullet Call Select($A',1,m+1,\lfloor (m+1)/2 \rfloor)$ and use the returned element as the pivot

Example

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm Pseudocode

Time Complexity
Master Theorem

Split into teams, and work this example on the board: Find the 4th smallest element of A=[4,9,12,17,6,5,21,14,8,11,13,29,3]

Show results for each step of Select, Partition, and ChoosePivotElement

Time Complexity

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm Pseudocode Example

- Key to time complexity analysis is lower bounding the fraction of elements discarded at each recursive call to Select
- On next slide, medians and median (x) of medians are marked, arrows indicate what is guaranteed to be greater than what
- ullet Since x is less than at least half of the other medians (ignoring group with < 5 elements and x's group) and each of those medians is less than 2 elements, we get that the number of elements x is less than is at least

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \ge \frac{3n}{10}-6 \ge n/4 \qquad \text{(if } n \ge 120\text{)}$$

- Similar argument shows that at least $3n/10-6 \ge n/4$ elements are less than x
- ullet Thus, if $n \geq 120$, each recursive call to Select is on at most 3n/4 elements

Time Complexity (2)

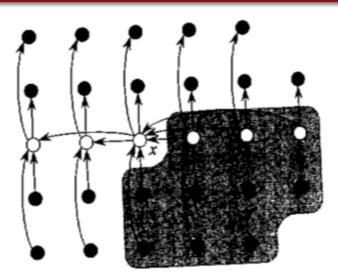
CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm Pseudocode Example



Time Complexity (3)

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm Pseudocode Example

- Now can develop a recurrence describing Select's time complexity
- ullet Let T(n) represent total time for Select to run on input of size n
- \bullet Choosing a pivot element takes time O(n) to split into size-5 groups and time T(n/5) to recursively find the median of medians
- ullet Once pivot element chosen, partitioning n elements takes O(n) time
- Recursive call to Select takes time at most T(3n/4)
- Thus we get

$$T(n) \le T(n/5) + T(3n/4) + O(n)$$

- Can express as $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha = 1/5$ and $\beta = 3/4$
- **Theorem:** For recurrences of the form $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha + \beta < 1$, T(n) = O(n)
- Thus Select has time complexity O(n)

Proof of Theorem

 αn

 $\alpha \alpha n$

CSCE423/823

Introduction

Finding Minimum and Maximum

Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode

Selection of

Example
Time Complexity
Master Theorem

Sur

 $T(\beta n)$, which take a total of $(\alpha + \beta)cn$ time, and so on.

Top T(n) takes O(n) time (= cn for some constant c). Then calls to $T(\alpha n)$ and

$$\beta n$$
 $(\alpha + \beta) c n$ $\alpha \beta n$ $\alpha \beta n$ $(\alpha + \beta)^2 c n$

Summing these infinitely yields (since $\alpha+\beta<1$)

$$cn(1+(\alpha+\beta)+(\alpha+\beta)^2+\cdots)=\frac{cn}{1-(\alpha+\beta)}=c'n=O(n)$$

Master Method

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview Algorithm Pseudocode Example Time Complexity

Master Theorem

- Another useful tool for analyzing recurrences
- Theorem: Let $a \geq 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined as T(n) = aT(n/b) + f(n). Then T(n) is bounded as follows.

 - ② If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
 - $\textbf{ If } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ for constant } \epsilon > 0 \text{, and if } af(n/b) \leq cf(n) \text{ for constant } c < 1 \text{ and sufficiently large } n \text{, then } T(n) = \Theta(f(n))$
- E.g. for Select, can apply theorem on T(n) < 2T(3n/4) + O(n) (note the slack introduced) with a=2, b=4/3, $\epsilon=1.4$ and get $T(n) = O\left(n^{\log_{4/3}2}\right) = O\left(n^{2.41}\right)$
- ⇒ Not as tight for this recurrence