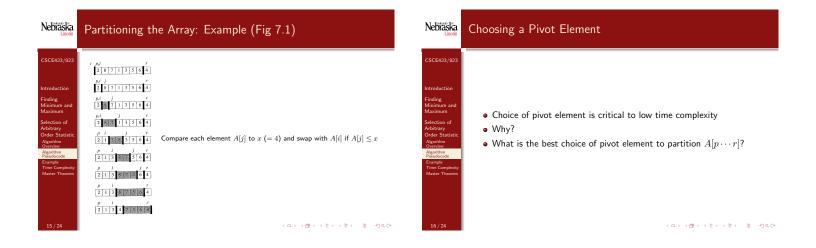


Nebiraska Lincoln F	Procedure Select
Introduction Finding Minimum and Asximum Selection of Avhitrary Order Statistic Aspection Aspection Example Theorem	$ \begin{array}{ c c c c c } 1 & \text{if } p == r \ \text{then} \\ 2 & return \ A[p] \\ 3 & q = Partition(A,p,r) \ // \ \text{Like Partition in Quicksort} \\ 4 & k = q - p + 1 \ // \ \text{Size of } A[p \cdots q] \\ 5 & \text{if } i = k \ \text{then} \\ 6 & return \ A[q] \ // \ \text{Pivot value is the answer} \\ 7 & \text{else if } i < k \ \text{then} \\ 8 & return \ \text{Select}(A,p,q-1,i) \ // \ \text{Answer is in left subarray} \\ 9 & \text{else} \\ 10 & return \ \text{Select}(A,q+1,r,i-k) \ // \ \text{Answer is in right subarray} \\ \hline \text{Algorithm 3: Select}(A,p,r,i), \ \text{which returns } ith \ \text{smallest element from} \\ A[p \cdots r] \end{array} $

Nebraiska What is Select Doing?

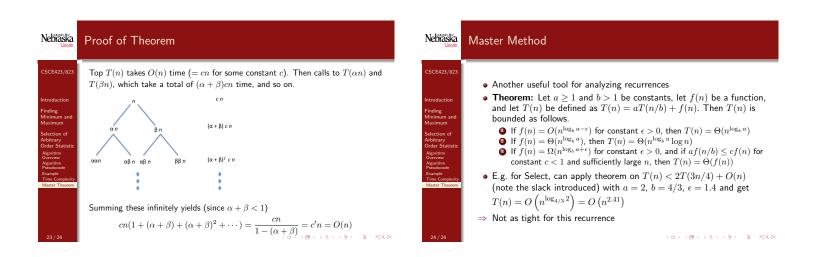
troduction


inding Ainimum ar Aaximum election of Arbitrary Order Statis Algorithm

- Like in Quicksort, Select first calls Partition, which chooses a **pivot** element q, then reorders A to put all elements < A[q] to the left of A[q] and all elements > A[q] to the right of A[q]
- $\bullet~$ E.g. if A=[1,7,5,4,2,8,6,3] and pivot element is 5, then result is A'=[1,4,2,3,5,7,8,6]
- $\bullet~\mbox{If } A[q]$ is the element we seek, then return it
- If sought element is in left subarray, then recursively search it, and ignore right subarray
- If sought element is in right subarray, then recursively search it, and ignore left subarray

Nebbisition Partitioning the Array CSCE423/823 Introduction Finding 1 x = ChoosePivotElement(A, p, r) // Returns index of pivot Finding <math>2 exchange A[x] with A[r] Minimum and 3 i = p - 1 A for j = p to r - 1 do

2 exchange A[x] with A[r]3 i = p - 14 for j = p to r - 1 do 5 if $A[j] \leq A[r]$ then 6 i = i + 17 exchange A[i] with A[j]8 end 9 exchange A[i + 1] with A[r]10 return i + 1


Algorithm 4: Partition(A,p,r), which chooses a pivot element and partitions $A[p\cdots r]$ around it

Nebraska	Choosing a Pivot Element (2)	Nebiaska Jacon Median of Medians
CSCE423/823 Introduction Finding Minimum and Maximum Selection of Arbitrary Other batistic Other batistic Other batistic Peterocol Peterocol Example The Construction Master Theorem	 Want to pivot on an element that it as close as possible to being the median Of course, we don't know what that is Will do median of medians approach to select pivot element 	CSCE423/823 Introduction Finding Minimum and Selection of Abbray Gree Statistic Newsitive Paradocode Example Sensitive Example Sensitive Example Sensitive Nake an array $A' = [x_1, x_2, \dots, x_{m+1}]$, where x_i is median of group i, found by sorting (in constant time) group $iCall Select(A', 1, m + 1, \lfloor (m + 1)/2 \rfloor) and use the returned elementas the pivot$
17 / 24	(ロ)、(型)、(注)、(注)、(注)、(注)、()	18/24

Nebraska Nebraska Example Time Complexity . Key to time complexity analysis is lower bounding the fraction of elements discarded at each recursive call to Select • On next slide, medians and median (x) of medians are marked, roductio arrows indicate what is guaranteed to be greater than what • Since x is less than at least half of the other medians (ignoring group Split into teams, and work this example on the board: Find the 4th with <5 elements and $x{\rm 's}$ group) and each of those medians is less smallest element of A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]than 2 elements, we get that the number of elements x is less than is Show results for each step of Select, Partition, and ChoosePivotElement at least $3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2\right) \ge \frac{3n}{10} - 6 \ge n/4 \qquad \text{(if } n \ge 120\text{)}$ • Similar argument shows that at least $3n/10 - 6 \ge n/4$ elements are less than \boldsymbol{x} • Thus, if n > 120, each recursive call to Select is on at most 3n/4elements

