
CSCE423/823

Introduction

Proofs of NPC
Problems

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

sscott@cse.unl.edu

1 / 43

mailto:sscott@cse.unl.edu

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Introduction

So far, we have focused on problems with “efficient” algorithms

I.e. problems with algorithms that run in polynomial time: O(nc) for
some constant c ≥ 1

Side note: We call it efficient even if c is large, since it is likely that
another, even more efficient, algorithm exists

But, for some problems, the fastest known algorithms require time
that is superpolynomial

Includes sub-exponential time (e.g. 2n1/3
), exponential time (e.g. 2n),

doubly exponential time (e.g. 22n

), etc.
There are even problems that cannot be solved in any amount of time
(e.g. the “halting problem”)

2 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP

Our focus will be on the complexity classes called P and NP

Centers on the notion of a Turing machine (TM), which is a finite
state machine with an infinitely long tape for storage

Anything a computer can do, a TM can do, and vice-versa
More on this in CSCE 428/828 and CSCE 424/824

P = “deterministic polynomial time” = the set of problems that can
be solved by a deterministic TM (deterministic algorithm) in
polynomial time

NP = “nondeterministic polynomial time” = the set of problems
that can be solved by a nondeterministic TM in polynomial time

Can loosely think of a nondeterministic TM as one that can explore
many, many possible paths of computation at once
Equivalently, NP is the set of problems whose solutions, if given, can
be verified in polynomial time

3 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP Example

Problem HAM-CYCLE: Does a graph G = (V,E) contain a
hamiltonian cycle, i.e. a simple cycle that visits every vertex in V
exactly once?

This problem is in NP, since if we were given a specific G plus the
answer to the question plus a certificate, we can verify a “yes”
answer in polynomial time using the certificate
What would be an appropriate certificate?
Not known if HAM-CYCLE ∈ P

4 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

P vs. NP Example (2)

Problem EULER: Does a directed graph G = (V,E) contain an
Euler tour, i.e. a cycle that visits every edge in E exactly once and
can visit vertices multiple times?

This problem is in P, since we can answer the question in polynomial
time by checking if each vertex’s in-degree equals its out-degree
Does that mean that the problem is also in NP? If so, what is the
certificate?

5 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

NP-Completeness

Any problem in P is also in NP, since if we can efficently solve the
problem, we get the poly-time verification for free

⇒ P ⊆ NP

Not known if P ⊂ NP, i.e. unknown if there a problem in NP that’s
not in P

A subset of the problems in NP is the set of NP-complete (NPC)
problems

Every problem in NPC is at least as hard as all others in NP
These problems are believed to be intractable (no efficient algorithm),
but not yet proven to be so
If any NPC problem is in P, then P = NP and life is glorious

..
^

6 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Proving NP-Completeness

Thus, if we prove that a problem is NPC, we can tell our boss that
we cannot find an efficient algorithm and should take a different
approach

E.g. Approximation algorithm, heuristic approach

How do we prove that a problem A is NPC?
1 Prove that A ∈ NP by finding certificate
2 Show that A is as hard as any other NP problem by showing that if we

can efficiently solve A then we can efficiently solve all problems in NP

First step is usually easy, but second looks difficult

Fortunately, part of the work has been done for us ...

7 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions

We will use the idea of a reduction of one problem to another to
prove how hard it is

A reduction takes an instance of one problem A and transforms it to
an instance of another problem B in such a way that a solution to
the instance of B yields a solution to the instance of A

Example 1: How did we solve the bipartite matching problem?

Example 2: How did we solve the topological sort problem?

Time complexity of reduction-based algorithm for A is the time for
the reduction to B plus the time to solve the instance of B

8 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Decision Problems

Before we go further into reductions, we simplify our lives by
focusing on decision problems

In a decision problem, the only output of an algorithm is an answer
“yes” or “no”

I.e. we’re not asked for a shortest path or a hamiltonian cycle, etc.

Not as restrictive as it may seem: Rather than asking for the weight
of a shortest path from i to j, just ask if there exists a path from i
to j with weight at most k

Such decision versions of optimization problems are no harder than
the original optimization problem, so if we show the decision version
is hard, then so is the optimization version

Decision versions are especially convenient when thinking in terms of
languages and the Turing machines that accept/reject them

9 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (2)

What is a reduction in the NPC sense?

Start with two problems A and B, and we want to show that
problem B is at least as hard as A

Will reduce A to B via a polynomial-time reduction by
transforming any instance α of A to some instance β of B such that

1 The transformation must take polynomial time (since we’re talking
about hardness in the sense of efficient vs. inefficient algorithms)

2 The answer for α is “yes” if and only if the answer for β is “yes”

If such a reduction exists, then B is at least as hard as A since if an
efficient algorithm exists for B, we can solve any instance of A in
polynomial time

Notation: A ≤P B, which reads as “A is no harder to solve than B,
modulo polynomial time reductions”

10 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (3)

rsr-r]r k- urqrlo.eJ WW uoulumssm :t$ m*a|lfuCI}-d:{sr flr BEqortroamrden

:rflF uI.J3rr3.lsoq'-uqrurs $ -q';olopoqrJwJmJd ru 'F uqqordJOJ uryuo;Ie 3url

-yf,ro'.u.rlod ou il"rnlosqe sJ araqr tuql aunsse loulreJ e-s. 'ssoustalduor-41q rog

F- roJ utpuo31e eurrpprou(1od ou sr eJotil 1eq1 uoqdunsse

-no snJrpe-uuoJ qJrg.!\ 'aun prurou,{Iod 14 y ualqord allos 01 ,{em e e^eq plnod\

;'u 't'fg am6rg ur u^\oqs poqleu aql Sursn 'ueql 'urpFo8p eurq-lenuoufyod

r:-E{ s rugt esoddns ''e'r 'esr^ueqto esoddnS 'g JoJ lsrxe rreJ ruqluo8le eurrl

-iu"rrooui1od ou teqt
^\oqs

ol uoqcrperuoc
'(q;oord

eydurs e esn IIBo e^\ a\oN 'Br Jo
ia-'ustfln oi y Jo seJrr?lsu Sumuogsue4 uorlonpeJ erurl-Ieruour(1od e eABq eA\ leql
raryrql asoddng ('y ureyqord e q3ns pug ol 1v\oq qlrA\

^\ou
JoJ sellesJno ruecuoo

rou m te1) 'tsrxe uec urqluo8le ouqleruou,(1od ou leql urroul fpeeqe e,4a qclq.4a

rio+ t uelqord uorsrcep e o^eq em esoddnS 'g urelqord relncrged ! JoJ lsrxe u!c

m4lFo8ie eurl-I![uou,(1od ou]eql 1y\oqs ol suoDcnpeJ eru4-leruou,(1od esn plnoc

: L! $oq ,l.roqs pue 'JequnJ dels e eepr eql e{81 sn leT 'e1e1duoc-451 sr urelqord e 1eql
.w.oqs 01 fe.r,r elrsoddo eql ur suollJnpeJ eluq-leruou,(1od esn em'sr 11 {see urroq ueql

ireqler sr uelqord e preq ,loq Suruvroqs lnoqe sr sseuelelduoc-dN luqt Surlpceg
'y Jo ..sseulsee,,

eqt a,rord 01 g Jo ..sseurs!e,, oql esn ea\ 'g uelqord Surnlos ol y uelqoJd 8un1os

..f,urcnper,, fq 'spro,rn Jeqlo uI 'eruq I!ruour{1od ur n uo eplcep ol fe,l e eABq elr os

p{ru 'osp op reqteSol eerql IIe'eruq lenuou,(1od se4et sdels eseqlgo l{cee se 3uo1sy

'2o JoJ Je^\sue eqt se 5/ JoJ JeA\srrB eql esn 'g

'6l ecuelsur oql uo !r JoJ tuqllJoSle uorsrcep eull-leluou,(1od eqf ung 'Z

'g ruelqord go g/ ecuelsur ue o1 trl rruoJsue4 ol

urqruoSle uoBcnpeJ erurl-leruou,{1od e esn 'y urelqord Jo /o ecu?lsur u? UoAIC 'I

:eu4 l"ruou,{1od ur y uelqord e^Ios ol ,{e,r e sn seprlord ll 's^\oqs I'vE ern

-3rg se 'pue ulqtuo&4o uogcnpat aun1-lertJrou,(1od e ernpecord e qcns IIec e N

asn e,$ pu? 'eurr1 ppuou,{1od ur g e^ros e.", 's Jo d""*rr* * Jrii'o:f:T"ilff #tr$#t:T
'au4 lerurouflod u1 'g ruelqord reqloue ro; urq1uo81e uorsrcep euDleruroudlod e uelrt 'eur1 lenuou

-(1od
ur y ruelqord uorsrcep ! ellos ot ruq1uo81e uollcnper eurl-1erurou,(1od e 3urs11 1'yg o,Inflg

ssauataldwo3-471 yg.taioq20t6

y eplrep ol uqtuo8p eurp-prurouf 1od

11 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Reductions (4)

But if we want to prove that a problem B is NPC, do we have to
reduce to it every problem in NP?

No we don’t:

If another problem A is known to be NPC, then we know that any
problem in NP reduces to it
If we reduce A to B, then any problem in NP can reduce to B via its
reduction to A followed by A’s reduction to B
We then can call B an NP-hard problem, which is NPC if it is also in
NP
Still need our first NPC problem to use as a basis for our reductions

12 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT

Our first NPC problem: CIRCUIT-SAT

An instance is a boolean combinational circuit (no feedback, no
memory)

Question: Is there a satisfying assignment, i.e. an assignment of
inputs to the circuit that satisfies it (makes its output 1)?

13 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT (2)

34.3 NP-completeness and reducibility 989

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment (xt : 1,

xz: l, x: : 0) to the inputs of this circuit causes the output of the circuit to be 1. The circuit

is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the

circuit to be 1. The circuit is therefore unsatisfiable.

show, no assignment of values to x1, x2, and x3 causes the cilcuit in Figure 34.8(b)

to produce a 1 output; it always produces 0, and so it is unsatisfiable.

The circuit-satisfiability problem is, "Given a boolean combinational circuit

composed of AND, OR, and NOT gates, is it satisfiable?" In order to pose this

question formally, however, we must agree on a standard encoding for circuits.

The size of a boolean combinational circuit is the number of boolean combina-

tional elements plus the number of wires in the circuit. One can devise a graphlike

encoding that maps any given circuit C into a binary string (C) whose length is

polynomial in the size of the circuit itself. As a formal language, we can therefore

define

CIRCUIT-SAT: {(C) : C is a satisfiable boolean combinational circuit} .

The circuit-satisfiability problem arises in the area of computer-aided hardware

optimization. If a subcircuit always produces 0, that subcircuit can be replaced by a

simpler subcircuit that omits all logic gates and provides the constant 0 value as its

output. It would be helpful to have a polynomial-time algorithm for this problem.

Given a circuit C, we might attempt to determine whether it is satisfiable by

simply checking all possible assignments to the inputs. Unfortunately, if there are ft

inputs, there are 2k possible assignments. When the size of C is polynomial in ft,

checking each one takes O(2k) time, which is superpolynomial in the size of the

Satisfiable Unsatisfiable

14 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

CIRCUIT-SAT (3)

To prove CIRCUIT-SAT to be NPC, need to show:
1 CIRCUIT-SAT ∈ NP; what is its certificate that we can confirm in

polynomial time?
2 That any problem in NP reduces to CIRCUIT-SAT

We’ll skip the NP-hardness proof, save to say that it leverages the
existence of an algorithm that verifies certificates for some NP
problem

15 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Other NPC Problems

We’ll use the fact that CIRCUIT-SAT is NPC to prove that these
other problems are as well:

SAT: Does boolean formula φ have a satisfying assignment?
3-CNF-SAT: Does 3-CNF formula φ have a satisfying assignment?
CLIQUE: Does graph G have a clique (complete subgraph) of k
vertices?
VERTEX-COVER: Does graph G have a vertex cover (set of vertices
that touches all edges) of k vertices?
HAM-CYCLE: Does graph G have a hamiltonian cycle?
TSP: Does complete, weighted graph G have a hamiltonian cycle of
total weight ≤ k?
SUBSET-SUM: Is there a subset S′ of finite set S of integers that
sum to exactly a specific target value t?

Many more in Garey & Johnson’s book, with proofs

16 / 43

CSCE423/823

Introduction

Efficiency

P vs. NP

NP-
Completeness

Proving NP-
Completeness

Reductions

CIRCUIT-SAT

Other NPC
Problems

Proofs of NPC
Problems

Other NPC Problems (2)

.VfVt ern8rC ur u^\oqs qder8 eql sI g uaql

'(tr Azx nrx) V (!rn zx Arx-) V (tr- Azx- nty): Q

eABq eA\ Jr 'uorlJrulsuos srql
go eldurexe u" sv 'eurl lerruou,(1od ur d ruog pelnduroc eq ,tpsee uec qder8 sq;

'f1 go uoqe8eu eqr 1ou sr ;'7 'sr r!ql 'raats'uoc oJe sluJerrl Burpuodse,.,oc Jreqr

pue's * "t'sl1eq1 'se1dr"q luereJJlp ur ere fn pu? .io

:p1oq SurmoIIoJ eqt Jo qtoq JI {n pue ja serrgen o^u uee.&qeq e3pe ue
1nd e16 ',4 olq 9n pr* ,zra ,rra secruel go e1du1 e eculd eM,Q q (:1 A fu n ID
: 'J esnelc qJee Jod 's^{oIIoJ s? polcrulsuoc sr (g ,A) : g qder8 eql
'4 ezrs;o enbrlc ! seq g yr ,(po pue JI elq!gsrles sr @ teql qcns 9 qder8 B lcrutsuor
11!qs el['9t p* '!7 'r,1 s1r-nqJ]cqlsrp eerql ,(pcexe seq /3 esn!Ic qcee ,4 ,Z .I

- .1 roC 'sesnelc ? Ullm CNJ-! rrr elnurroJ rreelooq e eq 4) V ... V z3 y 13
: Q le'I 'JVS-SNJ-g Jo ecrretsur ue qtl^r sur8eq urqluo8le uoqcnper eqI

'sqder8 Wyvr op ol elnl eleq ol ruees s!Inuuog pcr8ol oc"Jms oql uo ecrrs
'Sursudms leq./v\euos $ llnseJ srql enord ol elq? eq pFoqs e^\ 1!qI -pr"q-dN sr ruel
-qord enbrlc eqt teq] s.r\ogs qrlrll!\ 'gnOITJ d! IVS-SNJ-Ereu1enord lxeu e11

'gr o1 s8uoleq (a'n) e8pe eqt ' ,A) a ,n r[ed
qJse JoJ 'reqleqzvr Surlceqc ,(q eunl 1e[uou,(1od ur peqsqdurocce eq uec enbrlc e sr

// Jeqleq^\ 3ur1ceq3 'g roJ epJgruec e se enbrlc eql ur secrue
^ Jo A j ,/ les

eqtr esn ol'l''(g'A) : g qder8 uenrS e roJ .dN > inOITJ teqt .{\oqs oJ !oo"t4

rlln syoord rv s r! r* oi:";1'fl"y3ilJj#:::#fi.I_KTffifil'ilj'Hli? jl:';#

ssauata1dwoS-4111 pE n4dnq3

f;lmB*_wrm-

,001

(Note different types of problems reducing to each other)17 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Formula Satisfiability (SAT)

Given: A boolean formula φ consisting of
1 n boolean variables x1, . . . , xn

2 m boolean connectives from ∧, ∨, ¬, →, and ↔
3 Parentheses

Question: Is there an assignment of boolean values to x1, . . . , xn to
make φ evaluate to 1?

E.g.: φ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2 has satisfying
assignment x1 = 0, x2 = 0, x3 = 1, x4 = 1 since

φ = ((0 → 0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬((1 ↔ 1) ∨ 1)) ∧ 1
= (1 ∨ ¬(1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

18 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC

SAT is in NP: φ’s satisfying assignment certifies that the answer is
“yes” and this can be easily checked in poly time

SAT is NP-hard: Will show CIRCUIT-SAT ≤P SAT by reducing from
CIRCUIT-SAT to SAT

In reduction, need to map any instance (circuit) C of CIRCUIT-SAT
to some instance (formula) φ of SAT such that C has a satisfying
assignment if and only if φ does

Further, the time to do the mapping must be polynomial in the size
of the circuit, implying that φ’s representation must be polynomially
sized

19 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (2)

Define a variable in φ for each wire in C:

s8en8uel eql lJL4seJ lou lsnu ozlr .oslnoJ
Jr

-os
'selnuuo3r *'1ooq so- "a*#i ;ffi:y" L::i:,"*:f1T"** Io^\ar reqr

ueuo sr lI 'porsprsuoc eq lsn.' rc.il ,"rnrJo roqunu esnq e , o*riffiTJr"il3ffi"J slql pue 'q'noql '"InY:i-ndq i:r, ;;;-rjm ururuo'p uop"npe, e{r ,{rulq -Bgs4?s epuuoJ rrro4 uo4cnpar,tq
"retauoc-au pelord

"q
*" sruelqord {,*trt

.d1Jgqegs1les
dNJ-g

t

mllryqx*irrl

,il*"f:l:i:::i"jq^'rvs d; rvs-rrnrurr lsql ul\oqs e^eq e,,lr .snq;
lueurn3re snoact

quJ qrrr'{1K'JVs d;
rVS-rrnJuIJ

'I ot
"lnnpn" "t

Q r"rnn" l?rn ruaunr?,".,]fT. T 5 T:gsrles
sr .t rpr',,

"q1
'I ol elenlele ot Q sosruc teqt tuauru'rrr*

'to'" us
^q

olqeusrles sr J llncJrc eql
-I?Aa rc;o uorpunfuoc .rn qnrn nrh .-' ^- -*

sl eJoql;r tlesre,ruoJ 'I ol selen
;:?:#1'":::jl]:,*l;'i""H#,tr"**i,:::#:t":iil"i::3,"h",l,Tff
;#:ffi ^"il",'fflf J",#ffiiT::T:T:'^."'.:t'i:';ilii1:i:ii",llilJ"il 3T''",:frilff"',"1;'ffi ff:i'#,"i:,::'i::tl::1tl#ffi ?ffi il:lT;T r JI eelqessrr's sr @ epuuos

"q, .,"q^ ip**'#il", jiiffilTfi'rti^*
pturou'(10d ur / ep'uo,e qJns ecnpord ol preruroJlr{'r'4s sr rI, J 1!nc4r, ,""ff

((6x v sx v Lr) <> orr) v
((Lx t', sx) <> 6x) y

((ex t, sr) + sr) v
((rx v zx v rx) <> tx) v

(nx- <> 9x) v
((zx n Ir) <+ sx) v

(sr- <> vx) v orx - q

aqr'{qpecnpordepuuos"qrr'*qnc,'J,:'.X:"J1#:Iffi:iilf
1fi ffi ;J,:lffi "Tl":j:#ff

7*

rx

ssaua|aldwo3_47,,1
r! ptdrqJ

866

20 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (3)

Then define a clause of φ for each gate that defines the function for
that gate:

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

21 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SAT is NPC (4)

Size of φ is polynomial in size of C (number of gates and wires)

⇒ If C has a satisfying assignment, then the final output of the circuit
is 1 and the value on each internal wire matches the output of the
gate that feeds it

Thus, φ evaluates to 1

⇐ If φ has a satisfying assignment, then each of φ’s clauses is satisfied,
which means that each of C’s gate’s output matches its function
applied to its inputs, and the final output is 1

Since satisfying assignment for C ⇒ satisfying assignment for φ and
vice-versa, we get C has a satisfying assignment if and only if φ does

22 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

Given: A boolean formula that is in 3-conjunctive normal form
(3-CNF), which is a conjunction of clauses, each a disjunction of 3
literals, e.g.

(x1∨¬x1∨¬x2)∧ (x3∨x2∨x4)∧ (¬x1∨¬x3∨¬x4)∧ (x4∨x5∨x1)

Question: Is there an assignment of boolean values to x1, . . . , xn to
make the formula evaluate to 1?

23 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

3-CNF-SAT is NPC

3-CNF-SAT is in NP: The satisfying assignment certifies that the
answer is “yes” and this can be easily checked in poly time

3-CNF-SAT is NP-hard: Will show SAT ≤P 3-CNF-SAT

Again, need to map any instance φ of SAT to some instance φ′′′ of
3-CNF-SAT

1 Parenthesize φ and build its parse tree, which can be viewed as a
circuit

2 Assign variables to wires in this circuit, as with previous reduction,
yielding φ′, a conjunction of clauses

3 Use the truth table of each clause φ′
i to get its DNF, then convert it

to CNF φ′′
i

4 Add auxillary variables to each φ′′
i to get three literals in it, yielding φ′′′

i
5 Final CNF formula is φ′′′ =

∧
i φ′′′

i

24 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Building the Parse Tree

φ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

'(zx-vz(v t(-)n (zx-vz{_Vrt) t,(zxVz(_v r()n (xvzfv rt\

eFrruoJ CNCI eql

CNJ olq ((zx- v

ueqt ela 'j

-zJ'vlem8lg
ur_ uenr8 s1)@ ros

"oo
u,,I,j3u],"1llJi,:::; z() <+ I() : j@ esnelc eql ueluoc ezn ,eldurexo

rno uI

:;"tilY.lT,:T#":i:l',"Y^:tTu:.puesp,orrrleluerueldu""*((;:"")TlT 7'g) suorr
lnbe)

snel s,uearo4eq su-rsn ,rq):O;;#;#5 ilff
_-;--- .^-1 tt\r erttl"|Jvt dNJ E olul SInuuoJ SIql uoAUOS

11"*#,HY:::::r^r:T ".eNV ro uo *-(dNo to) w.ro{ Totutou
?il2{{-T#r3:j:"::',::::,^:i;il'";ffi ;"#:i,;:;r;A'#,#
ff ff:Ji#H"1,:i:Hf ,"^uil"::.f :^-"dil;;q,#;:;,ffi]loT"ff;J"l
:lifl ffi H:J'::":l:::':.1""f, jl:i"":.rqii'q-,"li,ii.;;;;:;;'1ffi#tri
iJJHT::ffi::'I:j,I"""'::::ln jlii j",*"iffi ;;';.1":"j:;ry;;j J"rruou ezulcunluoc olq jQ osnelc q"n" ,g"n ror uorlcnpor

"Ur r" U"i, O""rJ*
",ff

eq esner3.qruo leql sr lueue4nper Ieuorrrpp!,(po eq1 .sleror,,,rTff:Iifity#
Jo qc?o ';'@ sesnelc aro uo4cunfuo"'n ,, p"*elqo snqr ,p eprioleql ,nql e^Jesqo

. ((sr + r.r-) <+ s() v

((bx t s,() + s() v

(s,{- <> t() v

((zx <- tx) <+ e,e y

((t(n s,{) + z() v

((zx- v z() <> t,() V rt - ,Q

zx-v (('x A(tx <+ Ir-))-rr (z x <- rx)) : @ epuuo, eql 01 Surpuodserror eer eqJ 11.76 e.rnftg

ty

ssauala|dwoS-471
h! ntdoqJ

000t

Might need to parenthesize φ to put at most two children per node
25 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Assign Variables to wires

'(zx-vz(v t(-)n (zx-vz{_Vrt) t,(zxVz(_v r()n (xvzfv rt\

eFrruoJ CNCI eql

CNJ olq ((zx- v

ueqt ela 'j

-zJ'vlem8lg
ur_ uenr8 s1)@ ros

"oo
u,,I,j3u],"1llJi,:::; z() <+ I() : j@ esnelc eql ueluoc ezn ,eldurexo

rno uI

:;"tilY.lT,:T#":i:l',"Y^:tTu:.puesp,orrrleluerueldu""*((;:"")TlT 7'g) suorr
lnbe)

snel s,uearo4eq su-rsn ,rq):O;;#;#5 ilff
_-;--- .^-1 tt\r erttl"|Jvt dNJ E olul SInuuoJ SIql uoAUOS

11"*#,HY:::::r^r:T ".eNV ro uo *-(dNo to) w.ro{ Totutou
?il2{{-T#r3:j:"::',::::,^:i;il'";ffi ;"#:i,;:;r;A'#,#
ff ff:Ji#H"1,:i:Hf ,"^uil"::.f :^-"dil;;q,#;:;,ffi]loT"ff;J"l
:lifl ffi H:J'::":l:::':.1""f, jl:i"":.rqii'q-,"li,ii.;;;;:;;'1ffi#tri
iJJHT::ffi::'I:j,I"""'::::ln jlii j",*"iffi ;;';.1":"j:;ry;;j J"rruou ezulcunluoc olq jQ osnelc q"n" ,g"n ror uorlcnpor

"Ur r" U"i, O""rJ*
",ff

eq esner3.qruo leql sr lueue4nper Ieuorrrpp!,(po eq1 .sleror,,,rTff:Iifity#
Jo qc?o ';'@ sesnelc aro uo4cunfuo"'n ,, p"*elqo snqr ,p eprioleql ,nql e^Jesqo

. ((sr + r.r-) <+ s() v

((bx t s,() + s() v

(s,{- <> t() v

((zx <- tx) <+ e,e y

((t(n s,{) + z() v

((zx- v z() <> t,() V rt - ,Q

zx-v (('x A(tx <+ Ir-))-rr (z x <- rx)) : @ epuuo, eql 01 Surpuodserror eer eqJ 11.76 e.rnftg

ty

ssauala|dwoS-471
h! ntdoqJ

000t
φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2)) ∧ (y2 ↔ (y3 ∨ y4))∧

(y3 ↔ (x1 → x2)) ∧ (y4 ↔ ¬y5) ∧ (y5 ↔ (y6 ∨ x4)) ∧ (y6 ↔ (¬x1 ↔ x3))
26 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Convert Each Clause to CNF

Consider first clause φ′1 = (y1 ↔ (y2 ∧ ¬x2))
Truth table:

y1 y2 x2 (y1 ↔ (y2 ∧ ¬x2))
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

Can now directly read off DNF of negation:

¬φ′1 = (y1∧y2∧x2)∨(y1∧¬y2∧x2)∨(y1∧¬y2∧¬x2)∨(¬y1∧y2∧¬x2)

And use DeMorgan’s Law to convert it to CNF:

φ′′1 = (¬y1∨¬y2∨¬x2)∧(¬y1∨y2∨¬x2)∧(¬y1∨y2∨x2)∧(y1∨¬y2∨x2)
27 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Add Auxillary Variables

Based on our construction, φ = φ′′ =
∧

i φ
′′
i , where each φ′′i is a CNF

formula each with at most three literals per clause

But we need to have exactly three per clause!

Simple fix: For each clause Ci of φ′′,
1 If Ci has three distinct literals, add it as a clause in φ′′′

2 If Ci = (`1 ∨ `2) for distinct literals `1 and `2, then add to φ′′′

(`1 ∨ `2 ∨ p) ∧ (`1 ∨ `2 ∨ ¬p)
3 If Ci = (`), then add to φ′′′

(` ∨ p ∨ q) ∧ (` ∨ p ∨ ¬q) ∧ (` ∨ ¬p ∨ q) ∧ (` ∨ ¬p ∨ ¬q)

p and q are auxillary variables, and the combinations in which
they’re added result in a logically equivalent expression to that of the
original clause, regardless of the values of p and q

28 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness of Reduction

φ has a satisfying assignment iff φ′′′ does
1 CIRCUIT-SAT reduction to SAT implies satisfiability preserved from φ

to φ′

2 Use of truth tables and DeMorgan’s Law ensures φ′′ equivalent to φ′

3 Addition of auxillary variables ensures φ′′′ equivalent to φ′′

Constructing φ′′′ from φ takes polynomial time
1 φ′ gets variables from φ, plus at most one variable and one clause per

operator in φ
2 Each clause in φ′ has at most 3 variables, so each truth table has at

most 8 rows, so each clause in φ′ yields at most 8 clauses in φ′′

3 Since there are only two auxillary variables, each clause in φ′′ yields at
most 4 in φ′′′

4 Thus size of φ′′′ is polynomial in size of φ, and each step easily done
in polynomial time

29 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Clique Finding (CLIQUE)

Given: An undirected graph G = (V,E) and value k
Question: Does G contain a clique (complete subgraph) of size k?

Has a clique of size k = 6, but not of size 7
30 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

CLIQUE is NPC

CLIQUE is in NP: A list of vertices in the clique certifies that the
answer is “yes” and this can be easily checked in poly time

CLIQUE is NP-hard: Will show 3-CNF-SAT ≤P CLIQUE by mapping
any instance φ of 3-CNF-SAT to some instance 〈G, k〉 of CLIQUE

Seems strange to reduce a boolean formula to a graph, but we will
show that φ has a satisfying assignment iff G has a clique of size k
Caveat: the reduction merely preserves the iff relationship; it does not
try to directly solve either problem, nor does it assume it knows what
the answer is

31 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction

Let φ = C1 ∧ · · · ∧ Ck be a 3-CNF formula with k clauses

For each clause Cr = (`r
1 ∨ `r

2 ∨ `r
3) put vertices vr

1, vr
2, and vr

3 into V

Add edge (vr
i , v

s
j) to E if:

1 r 6= s, i.e. vr
i and vs

j are in separate triples
2 `r

i is not the negation of `s
j

Obviously can be done in polynomial time

32 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (2)

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
Satisfied by x2 = 0, x3 = 1

ii1 -;;- -wt

34.5 NP-complete problems 1005

Ct: XtY
-XZY -XZ

C2 : -1,
Y x2Y x3 Cz: xtY x2Y x3

Figure 34.14 The graph G derived from the 3-CNF formula Q : Ct A C2 A C3, where C1 :

(qv
-xz

v-r3), C2: QTrv xzv x3), and C3: @1 Y x2v x3), inreducing 3-CNF-SAT

to CLIQUE. A satisfying assignment of the formula has x2 - 0, 4 : l, wtd xl may be either 0

or 1. This assignment satisfies C1 with
-x2,

ondit satisfies C2 and C3 with 13, corresponding to the

clique with lightly shaded vertices.

We must show that this transformation of Q nto G is a leduction. First, suppose

that Q has a satisfying assignment. Then each clause C, contains at least one

literal ti that is assigned 1, and each such literal conesponds to a vertex ui . Picking

one such "true" literal from each clause yields a set V/ of k vertices. We claim that

V' is a clique. For any two vertices vi , ust e V', where r * s, both corresponding

literals li and /j are mapped to 1 by the given satisfying assignment, and thus the

literals cannot be complements. Thus, by the construction of G, the edge (ui' ui)

belongs to E.

Conversely, suppose thatG has a clique V' of size ft. No edges in G connect

vertices in the same triple, and so V' contains exactly one vertex per triple. We can

assign 1 to each literal li such that ul e Vt without fear of assigning 1 to both a

literal and its complement, since G contains no edges between inconsistent literals.

Each clause is satisfied, and so,f is satisfied. (Any variables that do not correspond

to a vertex in the clique may be set arbitrarily.)

In the example of Figure 34.14, a satisfying assignment of @ has xz : 0 and

xz : l. A corresponding clique of size k : 3 consists of the vertices coresponding

to -xzfrom the first clause, x3 from the second clause, and 4 from the third clause.

Because the clique contains no vertices corresponding to either x1 of -x1, we can

set .r1 to either 0 or 1 in this satisfying assignment.

33 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (3)

⇒ If φ has a satisfying assignment, then at least one literal in each
clause is true

Picking corresponding vertex from a true literal from each clause
yields a set V ′ of k vertices, each in a distinct triple

Since each vertex in V ′ is in a distinct triple and literals that are
negations of each other cannot both be true in a satisfying
assignment, there is an edge between each pair of vertices in V ′

V ′ is a clique of size k

⇐ If G has a size-k clique V ′, can assign 1 to corresponding literal of
each vertex in V ′

Each vertex in its own triple, so each clause has a literal set to 1

Will not try to set both a literal and its negation to 1

Get a satisfying assignment
34 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

A vertex in a graph is said to cover all edges incident to it
A vertex cover of a graph is a set of vertices that covers all edges in
the graph
Given: An undirected graph G = (V,E) and value k
Question: Does G contain a vertex cover of size k?

34.5 NP-complete problems

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G : (y, E) with

clique V/ : {u, u,x, y}. (b) The graph G produced by the reduction algorithm that has vertex cover

v -Vt - {w,z}.

a qaph. GivenL an undirected graph G : (V , E), we deflne t}re complement of G

as G : (V, E), where E : { (u,u): u,u eV,u * u, and(u,u) / E}. In other

words, G is the graph containing exactly those edges that are not in G. Figure 34.15

shows a graph and its complement and illustrates the reduction from CLIQUE to

VERTEX-COVER.

The reduction algorithm takes as input an instance (G, ft) of the clique problem.

It computes the complemerfi G, which is easily done in polynomial time. The

output of the reduction algorithm is the instance (G, lV | - k) of the vertex-cover

problem. To complete the proof, we show that this transformation is indeed a

reduction: the graph G has a clique of size ft if and only if the graph G has a vertex

cover of size lV | - k.

Suppose that G has a clique V' I V with lV'l : ft. We claim that V - V' is a

vertex cover in G. fet (u, u) be any edge in E. Then, (u, u) / E, which implies

that at least one of u or u does not belong to V/, since every pair of vertices in V/ is

connected by an edge of E. Equivalently, at least one of z or u is inV - V', which

means that edge (u, u) is covered by V - V'. Since (a, u) was chosen arbitrarily

from E, every edge of E is covered by a vertex inV - V'. Hence,the set V - V',

which has size lV | - k, forms a vertex cover for G.

Conversely, suppose that G has a vertex cover V' C V, where lV'l : lvl - k.

Then,foral lu,u !V,i f (u,u) eE,thenu eV' oru ! 7 'orboth. The

contraposi t ive of th is impl icat ionisthatforal l u,1) eV,t f u /V'andu /V' ,
then (2, u) e E.Inotherwords, V -V' is acl ique, andithas sizelVl- lv ' l : k. t

Since VERTEX-COVER is NP-complete, we don't expect to find a polynomial-

time algorithm for finding a minimum-size vertex cover. Section 35.1 presents a

polynomial-time "approximation algorithm," however, which produces "approxi-

1007

(b)(a)

ffia

Has a vertex cover of size k = 2, but not of size 135 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

VERTEX-COVER is NPC

VERTEX-COVER is in NP: A list of vertices in the vertex cover
certifies that the answer is “yes” and this can be easily checked in
poly time

VERTEX-COVER is NP-hard: Will show CLIQUE ≤P
VERTEX-COVER by mapping any instance 〈G, k〉 of CLIQUE to
some instance 〈G′, k′〉 of VERTEX-COVER

Reduction is simple: Given instance 〈G = (V,E), k〉 of CLIQUE,
instance of VERTEX-COVER is 〈G, |V | − k〉, where G = (V,E) is
G’s complement:

E = {(u, v) : u, v ∈ V, u 6= v, (u, v) 6∈ E}

Easily done in polynomial time

36 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness

⇒ Assume G has a size-k clique V ′ ⊆ V

Consider edge (u, v) ∈ E

If it’s in E, then (u, v) 6∈ E, so at least one of u and v (which cover
(u, v)) is not in V ′, so at least one of them is in V \ V ′

This holds for each edge in E, so V \ V ′ is a vertex cover of G of
size |V | − k

⇐ Assume G has a size-(|V | − k) vertex cover V ′

For each (u, v) ∈ E, at least one of u and v is in V ′

By contrapositive, if u, v 6∈ V ′, then (u, v) ∈ E

Since every pair of nodes in V \ V ′ has an edge between them,
V \ V ′ is a clique of size |V | − |V ′| = k

37 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

NPC Problem: Subset Sum (SUBSET-SUM)

Given: A finite set S of positive integers and a positive integer
target t

Question: Is there a subset S′ ⊆ S whose elements sum to t?

E.g. S =
{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993}
and t = 138457 has a solution
S′ = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705}

38 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

SUBSET-SUM is NPC

SUBSET-SUM is in NP: The subset S′ certifies that the answer is
“yes” and this can be easily checked in poly time

SUBSET-SUM is NP-hard: Will show 3-CNF-SAT ≤P CLIQUE by
mapping any instance φ of 3-CNF-SAT to some instance 〈S, t〉 of
SUBSET-SUM

Make two reasonable assumptions about φ:
1 No clause contains both a variable and its negation
2 Each variable appears in at least one clause

39 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction

Let φ have k clauses C1, . . . , Ck over n variables x1, . . . , xn

Reduction creates two numbers in S for each variable xi and two
numbers for each clause Cj

Each number has n + k digits, the most significant n tied to
variables and least significant k tied to clauses

1 Target t has a 1 in each digit tied to a variable and a 4 in each digit
tied to a clause

2 For each xi, S contains integers vi and v′
i, each with a 1 in xi’s digit

and 0 for other variables. Put a 1 in Cj ’s digit for vi if xi in Cj , and a
1 in Cj ’s digit for v′

i if ¬xi in Cj

3 For each Cj , S contains integers sj and s′
j , where sj has a 1 in Cj ’s

digit and 0 elsewhere, and s′
j has a 2 in Cj ’s digit and 0 elsewhere

Greatest sum of any digit is 6, so no carries when summing integers

Can be done in polynomial time
40 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

The Reduction (2)

C1 = (x1 ∨ ¬x2 ∨ ¬x3), C2 = (¬x1 ∨ ¬x2 ∨ ¬x3),
C3 = (¬x1 ∨ ¬x2 ∨ x3), C4 = (x1 ∨ x2 ∨ x3)

,iltffi

34.5 NP-complete problems 1015

x1)tz x3 Ct Cy C3 Cq

Figure 34.19 The reduction of 3-CNF-SAI to SUBSET-SUM. The formula in 3-CNF is @ :
C 1 AC 2 AC 3 AC4, where C 1 : @ 1v -xzv -4), C 2 : (-y 1y -x2v -4), C 3 : (y1y -x2v 4),
and C4 : (x1 v x2v x3). A satisfying assignment of @ is (x1 : 0, xZ : 0, x3 : 1). The set S
produced by the reduction consists of the base-l0 numbers shown; reading from top to bottom,
s : {100100r, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10,20,1,2}. The
target t is 1114444. The subset S' c S is lightly shaded, and it contains utr, ut , and u3, corresponding
to the satisfying assignment. It also contains slack variables s1, sl, s'r,4, sa, and sf to achieve the
target value of 4 in the digits labeled by C1 through C4.

and that either x; or -xi appearu in some clause, and so there must be some
clause C 1 for which u; and uj differ.

. For each clause C7, there are two integers, s7 and si in S. Each has 0's in all
digits other than the one labeled by C i. For si; there is a 1 in the C 1 digit, and sf
has a 2 in this digit. These integers are "slack variables," which we use to gel
each clause-labeled digit position to add to the target value of 4.
Simple inspection of Figure 34.19 demonstrates that all s;
are unique in set S.

and s1 values in S

Note that the greatest sum of digits in any one digit position is 6, which occurs
in the digits labeled by clauses (three l's from the u; and uj values, plus 1 and 2

x1 = 0, x2 = 0, x3 = 1
41 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness

⇒ If xi = 1 in φ’s satisfying assignment, SUBSET-SUM solution S′ will
have vi, otherwise v′i
For each variable-based digit, the sum of the elements of S′ is 1

Since each clause is satisfied, each clause contains at least one literal
with the value 1, so each clause-based digit sums to 1, 2, or 3

To match each clause-based digit in t, add in the appropriate subset
of slack variables si and s′i

42 / 43

CSCE423/823

Introduction

Proofs of NPC
Problems

SAT

3-CNF-SAT

CLIQUE

VERTEX-
COVER

SUBSET-SUM

Proof of Correctness (2)

⇐ In SUBSET-SUM solution S′, for each i = 1, . . . , n, exactly one of vi

and v′i must be in S′, or sum won’t match t

If vi ∈ S′, set xi = 1 in satisfying assignment, otherwise we have
v′i ∈ S′ and set xi = 0
To get a sum of 4 in clause-based digit Cj , S′ must include a vi or v′i
value that is 1 in that digit (since slack variables sum to at most 3)

Thus, if vi ∈ S′ has a 1 in Cj ’s position, then xi is in Cj and we set
xi = 1, so Cj is satisfied (similar argument for v′i ∈ S′ and setting
xi = 0)

This holds for all clauses, so φ is satisfied

43 / 43

	Introduction
	Efficiency
	P vs. NP
	NP-Completeness
	Proving NP-Completeness
	Reductions
	CIRCUIT-SAT
	Other NPC Problems

	Proofs of NPC Problems
	SAT
	3-CNF-SAT
	CLIQUE
	VERTEX-COVER
	SUBSET-SUM

