

CSCE423/823

Introduction

Proofs of NPC Problems

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness
Reductions
CIRCUIT-SAT
Other NPC
Problems

Proofs of NPC

- So far, we have focused on problems with "efficient" algorithms
- \bullet I.e. problems with algorithms that run in polynomial time: $O(n^c)$ for some constant $c \geq 1$
 - Side note: We call it efficient even if c is large, since it is likely that another, even more efficient, algorithm exists
- But, for some problems, the fastest known algorithms require time that is superpolynomial
 - Includes sub-exponential time (e.g. $2^{n^{1/3}}$), exponential time (e.g. 2^n), doubly exponential time (e.g. 2^{2^n}), etc.
 - There are even problems that cannot be solved in any amount of time (e.g. the "halting problem")

CSCE423/823

Introduction Efficiency

NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

Proofs of NPC

- Our focus will be on the complexity classes called P and NP
- Centers on the notion of a **Turing machine** (TM), which is a finite state machine with an infinitely long tape for storage
 - Anything a computer can do, a TM can do, and vice-versa
 - More on this in CSCE 428/828 and CSCE 424/824
- P = "deterministic polynomial time" = the set of problems that can be solved by a deterministic TM (deterministic algorithm) in polynomial time
- NP = "nondeterministic polynomial time" = the set of problems that can be solved by a nondeterministic TM in polynomial time
 - Can loosely think of a nondeterministic TM as one that can explore many, many possible paths of computation at once
 - Equivalently, NP is the set of problems whose solutions, if given, can be **verified** in polynomial time

P vs. NP Example

CSCE423/823

Introduction Efficiency

NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- Problem HAM-CYCLE: Does a graph G=(V,E) contain a **hamiltonian cycle**, i.e. a simple cycle that visits every vertex in V exactly once?
 - This problem is in NP, since if we were given a specific G plus the
 answer to the question plus a certificate, we can verify a "yes"
 answer in polynomial time using the certificate
 - What would be an appropriate certificate?
 - Not known if HAM-CYCLE ∈ P

P vs. NP Example (2)

CSCE423/823

Introduction Efficiency

NP-Completeness Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC

Proofs of NPC

- Problem EULER: Does a directed graph G=(V,E) contain an **Euler tour**, i.e. a cycle that visits every edge in E exactly once and can visit vertices multiple times?
 - This problem is in P, since we can answer the question in polynomial time by checking if each vertex's in-degree equals its out-degree
 - Does that mean that the problem is also in NP? If so, what is the certificate?

NP-Completeness

CSCE423/823

Introduction Efficiency P vs. NP NP-

Completeness

Proving NP-Completeness Reductions CIRCUIT-SAT Other NPC Problems

- Any problem in P is also in NP, since if we can efficiently solve the problem, we get the poly-time verification for free
 - \Rightarrow P \subseteq NP
- \bullet Not known if P \subset NP, i.e. unknown if there a problem in NP that's not in P
- A subset of the problems in NP is the set of NP-complete (NPC) problems
 - Every problem in NPC is at least as hard as all others in NP
 - These problems are believed to be intractable (no efficient algorithm), but not yet proven to be so
 - If any NPC problem is in P, then P = NP and life is glorious $\ddot{\ }$

Proving NP-Completeness

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness

Proving NP-Completeness

Reductions CIRCUIT-SAT Other NPC Problems

Proofs of NPC

- Thus, if we prove that a problem is NPC, we can tell our boss that we cannot find an efficient algorithm and should take a different approach
 - E.g. Approximation algorithm, heuristic approach
- How do we prove that a problem A is NPC?
 - **1** Prove that $A \in \mathsf{NP}$ by finding certificate
 - f 2 Show that A is as hard as any other NP problem by showing that if we can efficiently solve A then we can efficiently solve all problems in NP
- First step is usually easy, but second looks difficult
- Fortunately, part of the work has been done for us ...

Reductions

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness

Reductions
CIRCUIT-SAT
Other NPC
Problems

- We will use the idea of a reduction of one problem to another to prove how hard it is
- ullet A reduction takes an instance of one problem A and transforms it to an instance of another problem B in such a way that a solution to the instance of B yields a solution to the instance of A
- Example 1: How did we solve the bipartite matching problem?
- Example 2: How did we solve the topological sort problem?
- ullet Time complexity of reduction-based algorithm for A is the time for the reduction to B plus the time to solve the instance of B

Decision Problems

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness

Reductions
CIRCUIT-SAT
Other NPC
Problems

- Before we go further into reductions, we simplify our lives by focusing on decision problems
- In a decision problem, the only output of an algorithm is an answer "yes" or "no"
- I.e. we're not asked for a shortest path or a hamiltonian cycle, etc.
- ullet Not as restrictive as it may seem: Rather than asking for the weight of a shortest path from i to j, just ask if there exists a path from i to j with weight at most k
- Such decision versions of *optimization problems* are no harder than the original optimization problem, so if we show the decision version is hard, then so is the optimization version
- Decision versions are especially convenient when thinking in terms of languages and the Turing machines that accept/reject them

Reductions (2)

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness

Reductions
CIRCUIT-SAT
Other NPC
Problems

- What is a reduction in the NPC sense?
- \bullet Start with two problems A and B, and we want to show that problem B is at least as hard as A
- Will reduce A to B via a polynomial-time reduction by transforming any instance α of A to some instance β of B such that
 - The transformation must take polynomial time (since we're talking about hardness in the sense of efficient vs. inefficient algorithms)
 - **②** The answer for α is "yes" if and only if the answer for β is "yes"
- ullet If such a reduction exists, then B is at least as hard as A since if an efficient algorithm exists for B, we can solve any instance of A in polynomial time
- Notation: $A \leq_{\mathsf{P}} B$, which reads as "A is no harder to solve than B, modulo polynomial time reductions"

Reductions (3)

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness

Reductions

CIRCUIT-SAT Other NPC Problems

Reductions (4)

CSCE423/823

Introduction Efficiency P vs. NP NP-Completeness Proving NP-Completeness

CIRCUIT-SAT

Other NPC Problems

- But if we want to prove that a problem B is NPC, do we have to reduce to it every problem in NP?
- No we don't:
 - \bullet If another problem A is known to be NPC, then we know that any problem in NP reduces to it
 - \bullet If we reduce A to B, then any problem in NP can reduce to B via its reduction to A followed by A 's reduction to B
 - \bullet We then can call B an $\mbox{NP-hard}$ problem, which is NPC if it is also in NP
 - Still need our first NPC problem to use as a basis for our reductions

CIRCUIT-SAT

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness
Reductions

CIRCUIT-SAT Other NPC Problems

Proofs of NPC

- Our first NPC problem: CIRCUIT-SAT
- An instance is a boolean combinational circuit (no feedback, no memory)
- Question: Is there a satisfying assignment, i.e. an assignment of inputs to the circuit that satisfies it (makes its output 1)?

CIRCUIT-SAT (2)

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness

Reductions
CIRCUIT-SAT
Other NPC
Problems

CIRCUIT-SAT (3)

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness
Reductions

Other NPC Problems

- To prove CIRCUIT-SAT to be NPC, need to show:

 - That any problem in NP reduces to CIRCUIT-SAT
- We'll skip the NP-hardness proof, save to say that it leverages the existence of an algorithm that verifies certificates for some NP problem

Other NPC Problems

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness
Reductions
CIRCUIT-SAT
Other NPC

Problems
Proofs of NPC

- We'll use the fact that CIRCUIT-SAT is NPC to prove that these other problems are as well:
 - ullet SAT: Does boolean formula ϕ have a satisfying assignment?
 - \bullet 3-CNF-SAT: Does 3-CNF formula ϕ have a satisfying assignment?
 - ullet CLIQUE: Does graph G have a clique (complete subgraph) of k vertices?
 - VERTEX-COVER: Does graph G have a vertex cover (set of vertices that touches all edges) of k vertices?
 - ullet HAM-CYCLE: Does graph G have a hamiltonian cycle?
 - \bullet TSP: Does complete, weighted graph G have a hamiltonian cycle of total weight $\leq k?$
 - ullet SUBSET-SUM: Is there a subset S' of finite set S of integers that sum to exactly a specific target value t?
- Many more in Garey & Johnson's book, with proofs

Other NPC Problems (2)

CSCE423/823

Introduction
Efficiency
P vs. NP
NPCompleteness
Proving NPCompleteness
Reductions
CIRCUIT-SAT
Other NPC

Other NPO Problems

NPC Problem: Formula Satisfiability (SAT)

CSCE423/823

Introduction

Proofs of NPC Problems

SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER
SUBSET-SUM

• Given: A boolean formula ϕ consisting of

- \bullet n boolean variables x_1, \ldots, x_n
- 2 m boolean connectives from \land , \lor , \neg , \rightarrow , and \leftrightarrow
- Parentheses
- Question: Is there an assignment of boolean values to x_1, \ldots, x_n to make ϕ evaluate to 1?
- E.g.: $\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$ has satisfying assignment $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$ since

$$\phi = ((0 \to 0) \lor \neg((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$$

$$= (1 \lor \neg((1 \leftrightarrow 1) \lor 1)) \land 1$$

$$= (1 \lor \neg(1 \lor 1)) \land 1$$

$$= (1 \lor 0) \land 1$$

SAT is NPC

CSCE423/823

Introduction

Proofs of NPC Problems

SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER
SUBSET-SUM

- SAT is in NP: ϕ 's satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- \bullet SAT is NP-hard: Will show CIRCUIT-SAT \leq_P SAT by reducing from CIRCUIT-SAT to SAT
- In reduction, need to map any instance (circuit) C of CIRCUIT-SAT to some instance (formula) ϕ of SAT such that C has a satisfying assignment if and only if ϕ does
- ullet Further, the time to do the mapping must be polynomial in the size of the circuit, implying that ϕ 's representation must be polynomially sized

SAT is NPC (2)

CSCE423/823

Introduction

Proofs of NPC Problems

SAT 3-CNF-SAT CLIQUE

COVER SUBSET-SUM Define a variable in ϕ for each wire in C:

SAT is NPC (3)

CSCE423/823

Introduction

Proofs of NPC

SAT 3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM \bullet Then define a clause of ϕ for each gate that defines the function for that gate:

$$\phi = x_{10} \quad \wedge \quad (x_4 \leftrightarrow \neg x_3)$$

$$\wedge \quad (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge \quad (x_6 \leftrightarrow \neg x_4)$$

$$\wedge \quad (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge \quad (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\wedge \quad (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge \quad (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9))$$

SAT is NPC (4)

CSCE423/823

Introduction

Proofs of NPC Problems

SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER
SUBSET-SUM

- ullet Size of ϕ is polynomial in size of C (number of gates and wires)
- \Rightarrow If C has a satisfying assignment, then the final output of the circuit is 1 and the value on each internal wire matches the output of the gate that feeds it
 - ullet Thus, ϕ evaluates to 1
- \Leftarrow If ϕ has a satisfying assignment, then each of ϕ 's clauses is satisfied, which means that each of C's gate's output matches its function applied to its inputs, and the final output is 1
 - Since satisfying assignment for $C\Rightarrow$ satisfying assignment for ϕ and vice-versa, we get C has a satisfying assignment if and only if ϕ does

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

CSCE423/823

Introduction

Proofs of NPC Problems

3-CNF-SAT

CLIQUE VERTEX-COVER SUBSET-SUM • Given: A boolean formula that is in 3-conjunctive normal form (3-CNF), which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

$$(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_5 \vee x_1)$$

• Question: Is there an assignment of boolean values to x_1, \ldots, x_n to make the formula evaluate to 1?

3-CNF-SAT is NPC

CSCE423/823

Introduction

Proofs of NPC Problems

SAT

3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM • 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time

- 3-CNF-SAT is NP-hard: Will show SAT \leq_P 3-CNF-SAT
- \bullet Again, need to map any instance ϕ of SAT to some instance ϕ''' of 3-CNF-SAT
 - f 0 Parenthesize ϕ and build its *parse tree*, which can be viewed as a circuit
 - ② Assign variables to wires in this circuit, as with previous reduction, yielding ϕ' , a conjunction of clauses
 - ① Use the truth table of each clause ϕ_i' to get its DNF, then convert it to CNF ϕ_i''
 - $\textbf{ 4 dd auxillary variables to each } \phi_i^{\prime\prime} \text{ to get three literals in it, yielding } \phi_i^{\prime\prime\prime}$
 - **5** Final CNF formula is $\phi''' = \bigwedge_i \phi_i'''$

Building the Parse Tree

CSCE423/823

Introduction

Proofs of NPC Problems

SAT

3-CNF-SAT

CLIQUE VERTEX-COVER SUBSET-SUM $\phi = ((x_1 \to x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$

Might need to parenthesize ϕ to put at most two children per node

Assign Variables to wires

CSCE423/823

Introduction

Proofs of NPC Problems

SAT

3-CNF-SAT

VERTEX-COVER SUBSET-SUM

$$\phi' = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2)) \wedge (y_2 \leftrightarrow (y_3 \vee y_4)) \wedge (y_3 \leftrightarrow (x_1 \rightarrow x_2)) \wedge (y_4 \leftrightarrow \neg y_5) \wedge (y_5 \leftrightarrow (y_6 \vee x_4)) \wedge (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

4日 → 4周 → 4 三 → 4 三 → 9 0 ○

Convert Each Clause to CNF

Truth table:

CSCE423/823

Introduction

Proofs of NPC Problems

SAT

3-CNF-SAT

CLIQUE VERTEX-COVER SUBSET-SUM • Consider first clause $\phi_1' = (y_1 \leftrightarrow (y_2 \land \neg x_2))$

• Can now directly read off DNF of negation:

$$\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$$

And use DeMorgan's Law to convert it to CNF:

$$\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$$

Add Auxillary Variables

CSCE423/823

Introduction

Proofs of NPC Problems

SAT

3-CNF-SAT CLIQUE VERTEX-COVER SUBSET-SUM • Based on our construction, $\phi = \phi'' = \bigwedge_i \phi_i''$, where each ϕ_i'' is a CNF formula each with at most three literals per clause

- But we need to have exactly three per clause!
- Simple fix: For each clause C_i of ϕ'' ,
 - **①** If C_i has three distinct literals, add it as a clause in ϕ'''
 - ② If $C_i = (\ell_1 \vee \ell_2)$ for distinct literals ℓ_1 and ℓ_2 , then add to ϕ''' $(\ell_1 \vee \ell_2 \vee p) \wedge (\ell_1 \vee \ell_2 \vee \neg p)$
 - $\textbf{ If } C_i = (\ell), \text{ then add to } \phi''' \\ (\ell \vee p \vee q) \wedge (\ell \vee p \vee \neg q) \wedge (\ell \vee \neg p \vee q) \wedge (\ell \vee \neg p \vee \neg q)$
- p and q are auxillary variables, and the combinations in which they're added result in a logically equivalent expression to that of the original clause, regardless of the values of p and q

Proof of Correctness of Reduction

CSCE423/823

Introduction

Proofs of NPC Problems

3-CNF-SAT

CLIQUE VERTEX-COVER SUBSET-SUM ullet ϕ has a satisfying assignment iff ϕ''' does

- CIRCUIT-SAT reduction to SAT implies satisfiability preserved from ϕ to ϕ'
- **②** Use of truth tables and DeMorgan's Law ensures ϕ'' equivalent to ϕ'
- **3** Addition of auxiliary variables ensures ϕ''' equivalent to ϕ''
- ullet Constructing ϕ''' from ϕ takes polynomial time
 - ① ϕ' gets variables from ϕ , plus at most one variable and one clause per operator in ϕ
 - ② Each clause in ϕ' has at most 3 variables, so each truth table has at most 8 rows, so each clause in ϕ' yields at most 8 clauses in ϕ''
 - § Since there are only two auxillary variables, each clause in ϕ'' yields at most 4 in ϕ'''
 - $\ensuremath{\bullet}$ Thus size of $\phi^{\prime\prime\prime}$ is polynomial in size of $\phi,$ and each step easily done in polynomial time

NPC Problem: Clique Finding (CLIQUE)

CSCE423/823

Introduction

Proofs of NPC Problems

SAT 3-CNF-SAT

CLIQUE

VERTEX-COVER SUBSET-SUM • Given: An undirected graph G = (V, E) and value k

• Question: Does G contain a clique (complete subgraph) of size k?

CLIQUE is NPC

CSCE423/823

Introduction

Proofs of NPC Problems

3-CNF-SAT

VERTEX-COVER SUBSET-SUM CLIQUE is in NP: A list of vertices in the clique certifies that the answer is "yes" and this can be easily checked in poly time

- CLIQUE is NP-hard: Will show 3-CNF-SAT $\leq_{\mathbf{P}}$ CLIQUE by mapping any instance ϕ of 3-CNF-SAT to some instance $\langle G,k\rangle$ of CLIQUE
 - ullet Seems strange to reduce a boolean formula to a graph, but we will show that ϕ has a satisfying assignment iff G has a clique of size k
 - Caveat: the reduction merely preserves the iff relationship; it does not try to directly solve either problem, nor does it assume it knows what the answer is

The Reduction

CSCE423/823

Introduction

Proofs of NPC Problems

SAT 3-CNF-SAT

CLIQUE

VERTEX-COVER SUBSET-SUM • Let $\phi = C_1 \wedge \cdots \wedge C_k$ be a 3-CNF formula with k clauses

- For each clause $C_r = (\ell_1^r \vee \ell_2^r \vee \ell_3^r)$ put vertices v_1^r, v_2^r , and v_3^r into V
- Add edge (v_i^r, v_j^s) to E if:
 - **1** $r \neq s$, i.e. v_i^r and v_i^s are in separate triples
 - **2** ℓ^r_i is not the negation of ℓ^s_j
- Obviously can be done in polynomial time

The Reduction (2)

CSCE423/823

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$
 Satisfied by $x_2 = 0$, $x_3 = 1$

Introduction

Proofs of NPC Problems 3-CNF-SAT

CLIQUE

VERTEX-COVER SUBSET-SUM

The Reduction (3)

CSCE423/823

Introduction

Proofs of NPC Problems

CLIQUE

VERTEX-COVER SUBSET-SUI \Rightarrow If ϕ has a satisfying assignment, then at least one literal in each clause is true

- \bullet Picking corresponding vertex from a true literal from each clause yields a set V' of k vertices, each in a distinct triple
- \bullet Since each vertex in V' is in a distinct triple and literals that are negations of each other cannot both be true in a satisfying assignment, there is an edge between each pair of vertices in V'
- ullet V' is a clique of size k
- \Leftarrow If G has a size-k clique V', can assign 1 to corresponding literal of each vertex in V'
 - Each vertex in its own triple, so each clause has a literal set to 1
 - Will not try to set both a literal and its negation to 1
 - Get a satisfying assignment

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT

CLIQUE VERTEX-

COVER

SUBSET-SUM

- A vertex in a graph is said to **cover** all edges incident to it
- A **vertex cover** of a graph is a set of vertices that covers all edges in the graph
- Given: An undirected graph G = (V, E) and value k
- Question: Does G contain a vertex cover of size k?

Has a vertex cover of size k=2, but not of size 1

VERTEX-COVER is NPC

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE

VERTEX-COVER SUBSET-SUI

- VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies that the answer is "yes" and this can be easily checked in poly time
- VERTEX-COVER is NP-hard: Will show CLIQUE \leq_{P} VERTEX-COVER by mapping any instance $\langle G,k\rangle$ of CLIQUE to some instance $\langle G',k'\rangle$ of VERTEX-COVER
- Reduction is simple: Given instance $\langle G=(V,E),k\rangle$ of CLIQUE, instance of VERTEX-COVER is $\langle \overline{G},|V|-k\rangle$, where $\overline{G}=(V,\overline{E})$ is G's complement:

$$\overline{E} = \{(u, v) : u, v \in V, u \neq v, (u, v) \not\in E\}$$

• Easily done in polynomial time

Proof of Correctness

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER \Rightarrow Assume G has a size-k clique $V' \subseteq V$

- $\bullet \ \, {\rm Consider} \,\, {\rm edge} \,\, (u,v) \in \overline{E}$
- If it's in \overline{E} , then $(u,v) \not\in E$, so at least one of u and v (which cover (u,v)) is not in V', so at least one of them is in $V \setminus V'$
- \bullet This holds for each edge in $\overline{E},$ so $V\setminus V'$ is a vertex cover of \overline{G} of size |V|-k
- \leftarrow Assume \overline{G} has a size-(|V|-k) vertex cover V'
 - For each $(u,v) \in \overline{E}$, at least one of u and v is in V'
 - ullet By contrapositive, if $u,v \not\in V'$, then $(u,v) \in E$
 - Since every pair of nodes in $V\setminus V'$ has an edge between them, $V\setminus V'$ is a clique of size |V|-|V'|=k

NPC Problem: Subset Sum (SUBSET-SUM)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE

VERTEX-COVER

SUBSET-SUM

ullet Given: A finite set S of positive integers and a positive integer target t

- Question: Is there a subset $S' \subseteq S$ whose elements sum to t?
- E.g. $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\}$ and t = 138457 has a solution $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$

SUBSET-SUM is NPC

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-

COVER SUBSET-SUM

- SUBSET-SUM is in NP: The subset S' certifies that the answer is "yes" and this can be easily checked in poly time
- SUBSET-SUM is NP-hard: Will show 3-CNF-SAT \leq_{P} CLIQUE by mapping any instance ϕ of 3-CNF-SAT to some instance $\langle S,t\rangle$ of SUBSET-SUM
- Make two reasonable assumptions about ϕ :
 - No clause contains both a variable and its negation
 - Each variable appears in at least one clause

The Reduction

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE

- Let ϕ have k clauses C_1, \ldots, C_k over n variables x_1, \ldots, x_n
- \bullet Reduction creates two numbers in S for each variable x_i and two numbers for each clause C_j
- ullet Each number has n+k digits, the most significant n tied to variables and least significant k tied to clauses
 - Target t has a 1 in each digit tied to a variable and a 4 in each digit tied to a clause
 - $oldsymbol{lack}$ For each x_i , S contains integers v_i and v_i' , each with a 1 in x_i 's digit and 0 for other variables. Put a 1 in C_j 's digit for v_i if x_i in C_j , and a 1 in C_j 's digit for v_i' if $\neg x_i$ in C_j
 - **③** For each C_j , S contains integers s_j and s'_j , where s_j has a 1 in C_j 's digit and 0 elsewhere, and s'_j has a 2 in C_j 's digit and 0 elsewhere
- Greatest sum of any digit is 6, so no carries when summing integers
- Can be done in polynomial time

The Reduction (2)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-

$$C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3), C_3 = (\neg x_1 \vee \neg x_2 \vee x_3), C_4 = (x_1 \vee x_2 \vee x_3) x_1 x_2 x_3 C_1 C_2 C_3 C_4$$

MANAGEMENT	-	MORROW MAN	100000000000000000000000000000000000000	MARKAGE PROPERTY.	NEWS COLUMN	******	***********	******
v_1	=	- 1	0	0	1	0	0	- 1
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
v_3	=	0	0	1	0	0	1	1
v_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>S</i> ₃	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2

$$x_1 = 0, x_2 = 0, x_3 = 1$$

Proof of Correctness

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-

- \Rightarrow If $x_i=1$ in ϕ 's satisfying assignment, SUBSET-SUM solution S' will have v_i , otherwise v_i'
 - ullet For each variable-based digit, the sum of the elements of S' is 1
 - Since each clause is satisfied, each clause contains at least one literal with the value 1, so each clause-based digit sums to 1, 2, or 3
 - To match each clause-based digit in t, add in the appropriate subset of slack variables s_i and s_i'

Proof of Correctness (2)

CSCE423/823

Introduction

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-

- \Leftarrow In SUBSET-SUM solution S', for each $i=1,\ldots,n$, exactly one of v_i and v_i' must be in S', or sum won't match t
 - If $v_i \in S'$, set $x_i = 1$ in satisfying assignment, otherwise we have $v_i' \in S'$ and set $x_i = 0$
 - To get a sum of 4 in clause-based digit C_j , S' must include a v_i or v_i' value that is 1 in that digit (since slack variables sum to at most 3)
 - Thus, if $v_i \in S'$ has a 1 in C_j 's position, then x_i is in C_j and we set $x_i = 1$, so C_j is satisfied (similar argument for $v_i' \in S'$ and setting $x_i = 0$)
 - ullet This holds for all clauses, so ϕ is satisfied