Nelsisck

Lincoln

Computer Science & Engineering 423/8

Introduction

Design and Analysis of Algorithms

Pro NPC
Problems
Lecture 08 — NP-Completeness (Chapter 34)
Stephen Scott
(Adapted from Vinodchandran N. Variyam)
Spring 2010
1/43

Nebiaska [=RVSNN[=

Lincoln

@ Our focus will be on the complexity classes called P and NP
o Centers on the notion of a Turing machine (TM), which is a finite
state machine with an infinitely long tape for storage

e Anything a computer can do, a TM can do, and vice-versa
o More on this in CSCE 428/828 and CSCE 424/824

@ P = "deterministic polynomial time” = the set of problems that can
be solved by a deterministic TM (deterministic algorithm) in
of NPC polynomial time

Problems

@ NP = “nondeterministic polynomial time” = the set of problems
that can be solved by a nondeterministic TM in polynomial time
o Can loosely think of a nondeterministic TM as one that can explore
many, many possible paths of computation at once
o Equivalently, NP is the set of problems whose solutions, if given, can
be verified in polynomial time

2eEeY P yvs. NP Example (2)

o Problem EULER: Does a directed graph G = (V, E)) contain an
Euler tour, i.e. a cycle that visits every edge in E exactly once and
can visit vertices multiple times?

o This problem is in P, since we can answer the question in polynomial
time by checking if each vertex's in-degree equals its out-degree

o Does that mean that the problem is also in NP? If so, what is the
certificate?

Problems

Neveel |ntroduction

Lincoln

@ So far, we have focused on problems with “efficient” algorithms

Effciency @ |.e. problems with algorithms that run in polynomial time: O(n¢) for
some constant ¢ > 1

o Side note: We call it efficient even if ¢ is large, since it is likely that
another, even more efficient, algorithm exists
o But, for some problems, the fastest known algorithms require time
Proofs of NPC that is superpolynomial

o Includes sub-exponential time (e.g. 2"'"), exponential time (e.g. 2"),
doubly exponential time (e.g. 22"), etc.

o There are even problems that cannot be solved in any amount of time
(e.g. the “halting problem”)

ok . NP Example

CSCE423/823

Introduction
it o Problem HAM-CYCLE: Does a graph G = (V, E) contain a
hamiltonian cycle, i.e. a simple cycle that visits every vertex in V
exactly once?
o This problem is in NP, since if we were given a specific G plus the
answer to the question plus a certificate, we can verify a “yes”
Proofs of NPC answer in polynomial time using the certificate
(eins o What would be an appropriate certificate?
e Not known if HAM-CYCLE € P

NP-Completeness

Lincoln

@ Any problem in P is also in NP, since if we can efficently solve the

Introduction problem, we get the poly-time verification for free
= PCNP
@ Not known if P C NP, i.e. unknown if there a problem in NP that's
not in P
@ A subset of the problems in NP is the set of NP-complete (NPC)
Proofs of NPC problems

Problems

o Every problem in NPC is at least as hard as all others in NP

o These problems are believed to be intractable (no efficient algorithm),
but not yet proven to be so

o If any NPC problem is in P, then P = NP and life is glorious =

Nelsisck

Lincoln

Nebiaska

Lincoln

Problems

Lincoln

Problems

Proving NP-Completeness

@ Thus, if we prove that a problem is NPC, we can tell our boss that
we cannot find an efficient algorithm and should take a different
approach

o E.g. Approximation algorithm, heuristic approach
@ How do we prove that a problem A is NPC?
@ Prove that A € NP by finding certificate
@ Show that A is as hard as any other NP problem by showing that if we
can efficiently solve A then we can efficiently solve all problems in NP
o First step is usually easy, but second looks difficult

@ Fortunately, part of the work has been done for us ...

Decision Problems

o Before we go further into reductions, we simplify our lives by
focusing on decision problems

@ In a decision problem, the only output of an algorithm is an answer
"yes" or “no”

@ l.e. we're not asked for a shortest path or a hamiltonian cycle, etc.
@ Not as restrictive as it may seem: Rather than asking for the weight
of a shortest path from i to j, just ask if there exists a path from i

to j with weight at most &

@ Such decision versions of optimization problems are no harder than
the original optimization problem, so if we show the decision version
is hard, then so is the optimization version

@ Decision versions are especially convenient when thinking in terms of
languages and the Turing machines that accept/reject them

Reductions (3)

polynomial-time algorithm to decide A

Nelsisdk

Lincoln

Pro

Proofs of NPC
Problems

Lincoln

CSCE423/823

Introduction
Effi

Reductions
CIRCUIT-SAT
Other NPC

Proofs of NPC
Problems

Lincoln

Introduction
Eff

Proofs of NPC
Problems

12/43

Reductions

We will use the idea of a reduction of one problem to another to
prove how hard it is

A reduction takes an instance of one problem A and transforms it to
an instance of another problem B in such a way that a solution to
the instance of B yields a solution to the instance of A

Example 1: How did we solve the bipartite matching problem?

Example 2: How did we solve the topological sort problem?

Time complexity of reduction-based algorithm for A is the time for
the reduction to B plus the time to solve the instance of B

Reductions (2)

e What is a reduction in the NPC sense?

@ Start with two problems A and B, and we want to show that

problem B is at least as hard as A

Will reduce A to B via a polynomial-time reduction by

transforming any instance « of A to some instance 3 of B such that
@ The transformation must take polynomial time (since we're talking

about hardness in the sense of efficient vs. inefficient algorithms)
@ The answer for a is “yes” if and only if the answer for 3 is “yes”

If such a reduction exists, then B is at least as hard as A since if an
efficient algorithm exists for B, we can solve any instance of A in
polynomial time

Notation: A <p B, which reads as “A is no harder to solve than B,
modulo polynomial time reductions”

Reductions (4)

@ But if we want to prove that a problem B is NPC, do we have to
reduce to it every problem in NP?

o No we don't:

If another problem A is known to be NPC, then we know that any

problem in NP reduces to it

If we reduce A to B, then any problem in NP can reduce to B via its

reduction to A followed by A's reduction to B

o We then can call B an NP-hard problem, which is NPC if it is also in

NP

Still need our first NPC problem to use as a basis for our reductions

WEved-Y CIRCUIT-SAT

Lincoln

@ Our first NPC problem: CIRCUIT-SAT

@ An instance is a boolean combinational circuit (no feedback, no
memory)

@ Question: Is there a satisfying assignment, i.e. an assignment of
inputs to the circuit that satisfies it (makes its output 1)?

LR CIRCUIT-SAT (3)

@ To prove CIRCUIT-SAT to be NPC, need to show:
@ CIRCUIT-SAT € NP; what is its certificate that we can confirm in
polynomial time?
@ That any problem in NP reduces to CIRCUIT-SAT

o o We'll skip the NP-hardness proof, save to say that it leverages the
ofs of NPC

Problems existence of an algorithm that verifies certificates for some NP
problem

20cted Other NPC Problems (2)

CIRCUIT-SAT

el

Other Ni
Problems
Proofs of NPC
Problems

(Note different types of problems reducing to-each other)

WcERY CIRCUIT-SAT (2)

Lincoln

CIRCUIT-SAT
Other NPC
Pr

Proofs of NPC
Problems

Satisfiable Unsatisfiable

Other NPC Problems

Lincoln

CSCE423/823
o We'll use the fact that CIRCUIT-SAT is NPC to prove that these

other problems are as well:

o SAT: Does boolean formula ¢ have a satisfying assignment?

3-CNF-SAT: Does 3-CNF formula ¢ have a satisfying assignment?
o CLIQUE: Does graph G have a clique (complete subgraph) of k
vertices?
VERTEX-COVER: Does graph G have a vertex cover (set of vertices
that touches all edges) of k vertices?
HAM-CYCLE: Does graph G have a hamiltonian cycle?
TSP: Does complete, weighted graph G have a hamiltonian cycle of
total weight < k7
SUBSET-SUM: Is there a subset S’ of finite set S of integers that
sum to exactly a specific target value ¢7

Introduction

Proofs of NPC
Problems

@ Many more in Garey & Johnson's book, with proofs

NPC Problem: Formula Satisfiability (SAT)

Lincoln

@ Given: A boolean formula ¢ consisting of
@ n boolean variables z1,...,z,
@ m boolean connectives from A, V, =, —, and <
@ Parentheses

Introduction
Proofs of NPC
e @ Question: Is there an assignment of boolean values to z1, ..., z, to
make ¢ evaluate to 1?
o Eg.: ¢ = ((z1 — 22) V((—21 < x3) V 24)) A m2 has satisfying
assignment 1 =0, z2 =0, 3 =1, 4 = 1 since

¢ = ((0—-0)V=((=0-1)V1)A=0
(Iv=((1le1)vi)Aal

= (1v=(1vl)Aal
(
1

WLeetly SAT is NPC

Lincoln

@ SAT is in NP: ¢'s satisfying assignment certifies that the answer is
“yes" and this can be easily checked in poly time

Introduction

Proofs of NPC

Problems @ SAT is NP-hard: Will show CIRCUIT-SAT <p SAT by reducing from
CIRCUIT-SAT to SAT

oVeR” @ In reduction, need to map any instance (circuit) C' of CIRCUIT-SAT

SUBSET-SUM

to some instance (formula) ¢ of SAT such that C' has a satisfying
assignment if and only if ¢ does

o Further, the time to do the mapping must be polynomial in the size
of the circuit, implying that ¢'s representation must be polynomially
sized

WEcERY SAT is NPC (3)

Lincoln

@ Then define a term of ¢ for each gate that defines the function for
Introduction that gate:

Proofs of NPC
Problems

d=x10 N (T4 —x3)
x5 < (21 V x2))

T —\z4>

xg < (x5 V 2¢))

(

(

(

(27 < (21 A w2 A2g))
(

(x9 < (w6 V 7))

(

> > > > > >

10 < LL‘7 ANxg N\ l‘g))

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

Lincoln

Introduction

@ Given: A boolean formula that is in 3-conjunctive normal form
(3-CNF), which is a conjunction of clauses, each a disjunction of 3
literals, e.g.

Proofs of NPC

(z1 V@ Vo) A(zg Voo Vag) A(—x VeV ozg) A (g Vas V)

@ Question: Is there an assignment of boolean values to z1,...,z, to
make the formula evaluate to 1?

WcERY SAT is NPC (2)

Lincoln

CSCE423/823

Define a variable in ¢ for each wire in C:

Introduction x]

Proofs of NPC
Problems
X2

¢
wg\gr SuM

SAT is NPC (4)

Lincoln

CSCE423/823

@ Size of ¢ is polynomial in size of C' (number of gates and wires)

= If C has a satisfying assignment, then the final output of the circuit
is 1 and the value on each internal wire matches the output of the
gate that feeds it
o Thus, ¢ evaluates to 1

Introduction

Frsom < If ¢ has a satisfying assignment, then each of ¢'s clauses is satisfied,

which means that each of C's gate's output matches its function
applied to its inputs, and the final output is 1

Since satisfying assignment for C' = satisfying assignment for ¢ and
vice-versa, we get C' has a satisfying assignment if and only if ¢ does

3-CNF-SAT is NPC

Lincoln

@ 3-CNF-SAT is in NP: The satisfying assignment certifies that the
answer is “yes” and this can be easily checked in poly time

Introduction

Proofs of NPC o 3-CNF-SAT is NP-hard: Will show SAT <p 3-CNF-SAT

Problems

@ Again, need to map any instance ¢ of SAT to some instance ¢ of
3-CNF-SAT

@ Parenthesize ¢ and build its parse tree, which can be viewed as a
circuit

@ Assign variables to wires in this circuit, as with previous reduction,
yielding ¢, a conjunction of terms

@ Use the truth table of each clause ¢>2 to get its DNF, then convert it
to CNF ¢

@ Add auxillary variables to each ¢!/ to get three literals in it, yielding ¢}’

@ Final CNF formula is ¢ = A, ¢}"

W2etleY Byilding the Parse Tree

Lincoln

o= ((Il — .7)2) \Y ﬁ((ﬁml — I3) \ $4)) N —Tg

Introduction

Proofs of NPC
Problems

VERTEX-

SUBSET-SUM

Might need to parenthesize ¢ to put at most two children per node

WLvetd Convert Each Clause to CNF

Lincoln

o Consider first clause ¢} = (y1 < (y2 A —22))

@ Truth table:

[viya @2 | (g1 (y2 A ow2))
Proofs of NPC rot ! 0
Rebinn 1 1 0 1
10 1 0
1 0 0 0
0o 1 1 1
0 1 0 0
0 0 1 1
0 0 o 1
@ Can now directly read off DNF of negation:
¢ = (Y1 AY2Az2)V (Y1 A—yaAx2)V (Y1 Ay A—me) V (-1 Ay A—a)
@ And convert it to CNF:
B = (mn Vg2V z2) Ay VyaVoa2) A=y Vi Va2) A(y1 Vg2 Vas)
wctel Proof of Correctness of Reduction
@ ¢ has a satisfying assignment iff ¢’ does
oo @ CIRCUIT-SAT reduction to SAT implies satisfiability preserved from ¢
e M
to ¢
Proofs of NPC

@ Use of truth tables and DeMorgan's Law ensures ¢ equivalent to ¢’
© Addition of auxillary variables ensures ¢’ equivalent to ¢
o Constructing ¢ from ¢ takes polynomial time

@ ¢ gets variables from ¢, plus at most one variable and one clause per
operator in ¢

@ Each clause in ¢’ has at most 3 variables, so each truth table has at
most 8 rows, so each clause in ¢’ yields at most 8 clauses in ¢”

© Since there are only two auxillary variables, each clause in ¢ yields at
most 4 in ¢

@ Thus size of ¢ is polynomial in size of ¢, and each step easily done
in polynomial time

WN2etleY Assign Variables to wires

Lincoln

Introduction

Proofs of NPC
Problems

CLIQUE
VERTEX-
COVER

SUBSET-SUM

¢ =y Ay = (Y2 A=a2)) A (Y2 < (y3V ya))A
(Y3 = (21 = 22)) A (Y4 = ~y5) A (Y5 < (Y6 V 24)) A (Y6 < (-1 < 73))

Add Auxillary Variables

Lincoln

CSCE423/823
@ Based on our construction, ¢ = ¢" = \; ¢/, where each ¢} is a CNF
(e formula each with at most three literals per clause
o But we need to have exactly three per clause!
o Simple fix: For each clause C; of ¢”,
@ If C; has three distinct literals, add it as a clause in ¢"”
e Q If C; = ({4 V Ly) for distinct literals ¢ and {5, then add to ¢’
(64 VoV p) A (£ V Ly V —p)
Q If C; = (£), then add to ¢
(EVpVOALVPV=g) ALY =pV g ALV pV—q)

@ p and ¢ are auxillary variables, and the combinations in which
they're added result in a logically equivalent expression to that of the
original clause, regardless of the values of p and ¢

NPC Problem: Clique Finding (CLIQUE)

Lincoln

@ Given: An undirected graph G = (V, E) and value k
@ Question: Does G contain a clique (complete subgraph) of size k?
Introduction

Proofs of NPC

WLeetY CLIQUE is NPC

Lincoln

Introduction

o CLIQUE is in NP: A list of vertices in the clique certifies that the
Proofs of NPC . “ "
Problems answer is “yes” and this can be easily checked in poly time

e o CLIQUE is NP-hard: Will show 3-CNF-SAT <p CLIQUE by mapping
o any instance ¢ of 3-CNF-SAT to some instance (G, k) of CLIQUE
SUBSETSUM e Seems strange to reduce a boolean formula to a graph, but we will

show that ¢ has a satisfying assignment iff G has a clique of size k

o Caveat: the reduction merely preserves the iff relationship; it does not
try to directly solve either problem, nor does it assume it knows what
the answer is

Lincoln

WCvelal The Reduction (2)

o= <."L‘1 V oz V —‘.773) A (—‘.771 VgV .773) A (.’Itl V g \/.’1?3)
Satisfied by o =0, 23 =1
Introduction Cl =X Vg Vs
Proofs of NPC
Problems

C3=x1VXx3Vx3

Cy==x;VX3VX3

=3 NPC Problem: Vertex Cover Finding (VERTEX-COVER)

CSCE423/823

@ A vertex in a graph is said to cover all edges incident to it

@ A vertex cover of a graph is a set of vertices that covers all edges in
Introduction the graph

o Given: An undirected graph G = (V, E) and value k

@ Question: Does G contain a vertex cover of size k?

SUBSET-SUM

WEvet=Y The Reduction

Lincoln

CSCE423/823

Introduction

o Let = C1 A--- A Cy be a 3-CNF formula with & clauses

S eNr AT @ For each clause C, = (¢} V ¢35V £}) put vertices v}, v5, and vj into V
C| .

VERTER o Add edge (v],v5) to E if:

@ r# s, ie v and v are in separate triples

@ (] is not the negation of Zj

@ Obviously can be done in polynomial time

ve'ed The Reduction (3)

CSCE423/823

= If ¢ has a satisfying assignment, then at least one literal in each
clause is true

Introduction

@ Picking corresponding vertex from a true literal from each clause
proots of NPC yields a set V"’ of k vertices, each in a distinct triple
o Since each vertex in V' is in a distinct triple and literals that are

negations of each other cannot both be true in a satisfying
assignment, there is an edge between each pair of vertices in V'

V' is a clique of size k

< If G has a size-k clique V', can assign 1 to corresponding literal of
each vertex in V’

Each vertex in its own triple, so each clause has a literal set to 1

Will not try to set both a literal and its negation to 1

VERTEX-COVER is NPC

Get a satisfying assignment

Lincoln

CSCE4:

o VERTEX-COVER is in NP: A list of vertices in the vertex cover
S certifies that the answer is "yes” and this can be easily checked in
Proofs of NPC pOIy tlme
Frovtems o VERTEX-COVER is NP-hard: Will show CLIQUE <p
. VERTEX-COVER by mapping any instance (G, k) of CLIQUE to

some instance (G’, k') of VERTEX-COVER

@ Reduction is simple: Given instance (G = (V, E), k) of CLIQUE,
instance of VERTEX-COVER is (G, [V| — k), where G = (V, E) is
G's complement:

SUBSET-SUM

E={(u,v) : u,v € Vu # v, (u,v) ¢ E}

o Easily done in polynomial time

WEVeR=Y Proof of Correctness

Lincoln

Assume G has a size-k clique V' C V
e Consider edge (u,v) € E

TS If it's in F, then (u,v) € F, so at least one of u and v (which cover
(u,v)) is not in V, so at least one of them is in V' \ V'

This holds for each edge in E, so V'\ V' is a vertex cover of G of
OVER .

SUBSET-SUM size V| —k

Assume G has a size-(|V| — k) vertex cover V’

For each (u,v) € E, at least one of u and v is in V’

By contrapositive, if u,v ¢ V', then (u,v) € F

Since every pair of nodes in V'\ VV/ has an edge between them,
V\ V'is a clique of size |V|— |V'| =k

\Evet- SUBSET-SUM is NPC

Lincoln

introduction o SUBSET-SUM is in NP: The subset S’ certifies that the answer is
Proofs of NPC
Problems “yes" and this can be easily checked in poly time

@ SUBSET-SUM is NP-hard: Will show 3-CNF-SAT <p CLIQUE by
VERTEX mapping any instance ¢ of 3-CNF-SAT to some instance (S, t) of
— SUBSET-SUM
o Make two reasonable assumptions about ¢:

@ No clause contains both a variable and its negation
@ Each variable appears in at least one clause

The Reduction (2)

Lincoln

Ci = (Il V —zg V ﬁ:(73), Cy = (ﬁfbl V —xg V ﬁx3),
Cy = (—21 V22 Vag), Cy= (1 VraVas)

Introduction X ox x3 G G C Gy
“roble Vgt o Qe

cLiQue S T e
VER Vai=tn 00l 00]

e T
L0 0 0 e
f= 1 1 1 4 4 4 4 21=0,20=0,23=1

41/43

WcERY NPC Problem: Subset Sum (SUBSET-SUM)

Lincoln

CSCE423/823

Introduction

- o Given: A finite set S of positive integers and a positive integer
Problems tal‘get t
Question: Is there a subset S’ C S whose elements sum to t?

Proofs of NPC

SR °
su SUM ° Eg S =
{1,2,7,14,49,98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993}
and ¢ = 138457 has a solution
S'=1{1,2,7,98, 343, 686, 2409, 17206, 117705}
38/43
biaska Reduction
CSCE423/823 .
o Let ¢ have k clauses C1,...,C} over n variables x1,...,z,
@ Reduction creates two numbers in S for each variable z; and two
Introduction numbers for each clause C;
o Each number has n + k digits, the most significant n tied to

variables and least significant & tied to clauses

7 @ Target ¢ has a 1 in each digit tied to a variable and a 4 in each digit

. tied to a clause

@ For each z;, S contains integers v; and v}, each with a 1 in z;'s digit
and 0 for other variables. Put a 1 in Cj's digit for v; if x; in C}, and a
1in Cy's digit for v} if —a; in C;

@ For each C, S contains integers s; and s/, where s; has a 1in Cj's
digit and 0 elsewhere, and s} has a 2 in C;'s digit and 0 elsewhere

o Greatest sum of any digit is 6, so no carries when summing integers

@ Can be done in polynomial time
40 /43

Proof of Correctness

Lincoln

= If 2; = 1 in ¢'s satisfying assignment, SUBSET-SUM solution S’ will
have v;, otherwise v]
o For each variable-based digit, the sum of the elements of S” is 1

@ Since each clause is satisfied, each clause contains at least one literal
with the value 1, so each clause-based digit sums to 1, 2, or 3

@ To match each clause-based digit in ¢, add in the appropriate subset
of slack variables s; and s/

42/43

WcERY Proof of Correctness (2)

Lincoln

<« In SUBSET-SUM solution S/, for each i = 1,...,n, exactly one of v;
and v} must be in S, or sum won't match ¢

Introduction

Proofs of NPC
Problems o Ifv; € 9/, set x; = 1 in satisfying assignment, otherwise we have

vl €S and set z; =0
o To get a sum of 4 in clause-based digit C;j, 5" must include a v; or v}
value that is 1 in that digit (since slack variables sum to at most 3)

Thus, if v; € S’ hasa 1in Cj's position, then x; is in C; and we set
2; =1, so Cj is satisfied (similar argument for v; € S’ and setting
z; =0)

This holds for all clauses, so ¢ is satisfied

