Nebraska Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 08 — NP-Completeness (Chapter 34) Stephen Scott (Adapted from Vinodchandran N. Variyam) Spring 2010 4 D > 4 D > 4 E > 4 E > E 9 Q C

Nebraska

Introduction

- So far, we have focused on problems with "efficient" algorithms
- ullet I.e. problems with algorithms that run in polynomial time: $O(n^c)$ for some constant $c \ge 1$
 - ullet Side note: We call it efficient even if c is large, since it is likely that another, even more efficient, algorithm exists
- But, for some problems, the fastest known algorithms require time that is superpolynomial
 - Includes sub-exponential time (e.g. $2^{n^{1/3}}$), exponential time (e.g. 2^n), doubly exponential time (e.g. 2^2), etc.
 - There are even problems that cannot be solved in any amount of time (e.g. the "halting problem")

4 D > 4 D > 4 E > 4 E > E 9940

Nebraska

P vs. NP

- Our focus will be on the complexity classes called P and NP
- Centers on the notion of a Turing machine (TM), which is a finite state machine with an infinitely long tape for storage
 - Anything a computer can do, a TM can do, and vice-versa
 - More on this in CSCE 428/828 and CSCE 424/824
- ullet P = "deterministic polynomial time" = the set of problems that can be solved by a deterministic TM (deterministic algorithm) in polynomial time
- NP = "nondeterministic polynomial time" = the set of problems that can be solved by a nondeterministic TM in polynomial time
 - Can loosely think of a nondeterministic TM as one that can explore many, many possible paths of computation at once
 - Equivalently, NP is the set of problems whose solutions, if given, can be verified in polynomial time

40 × 40 × 42 × 42 × 2 990

P vs. NP Example

- ullet Problem HAM-CYCLE: Does a graph G=(V,E) contain a hamiltonian cycle, i.e. a simple cycle that visits every vertex in ${\cal V}$ exactly once?
 - ullet This problem is in NP, since if we were given a specific G plus the answer to the question plus a certificate, we can verify a "yes" answer in polynomial time using the certificate
 - What would be an appropriate certificate?
 - \bullet Not known if HAM-CYCLE \in P

101110101010

Nebraska

P vs. NP Example (2)

- ullet Problem EULER: Does a directed graph G=(V,E) contain an Euler tour, i.e. a cycle that visits every edge in E exactly once and can visit vertices multiple times?
 - This problem is in P, since we can answer the question in polynomial time by checking if each vertex's in-degree equals its out-degree
 - Does that mean that the problem is also in NP? If so, what is the certificate?

Nebraska

NP-Completeness

- Any problem in P is also in NP, since if we can efficently solve the problem, we get the poly-time verification for free \Rightarrow P \subseteq NP
- \bullet Not known if P \subset NP, i.e. unknown if there a problem in NP that's not in P
- A subset of the problems in NP is the set of NP-complete (NPC) problems
 - Every problem in NPC is at least as hard as all others in NP
 - These problems are believed to be intractable (no efficient algorithm), but not yet proven to be so
 - If any NPC problem is in P, then P = NP and life is glorious $\ddot{\ }$

4 D > 4 B > 4 B > 4 B > 9 Q C

Proving NP-Completeness

- Thus, if we prove that a problem is NPC, we can tell our boss that we cannot find an efficient algorithm and should take a different approach
 - . E.g. Approximation algorithm, heuristic approach
- How do we prove that a problem A is NPC?
 - $\ \ \, \textbf{ Prove that } A \in \mathsf{NP} \mathsf{ by finding certificate } \\$
 - $\ensuremath{\text{\textbf{0}}}$ Show that A is as hard as any other NP problem by showing that if we can efficiently solve \boldsymbol{A} then we can efficiently solve all problems in NP
- · First step is usually easy, but second looks difficult
- Fortunately, part of the work has been done for us ...

4 D > 4 B > 4 B > 4 B > B 9 9 9

4 D > 4 D > 4 E > 4 E > E 9 Q C

Reductions

- We will use the idea of a **reduction** of one problem to another to prove how hard it is
- ullet A reduction takes an instance of one problem A and transforms it to an instance of another problem \boldsymbol{B} in such a way that a solution to the instance of \boldsymbol{B} yields a solution to the instance of \boldsymbol{A}
- Example 1: How did we solve the bipartite matching problem?
- Example 2: How did we solve the topological sort problem?
- ullet Time complexity of reduction-based algorithm for A is the time for the reduction to \boldsymbol{B} plus the time to solve the instance of \boldsymbol{B}

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Decision Problems

- · Before we go further into reductions, we simplify our lives by focusing on decision problems
- In a decision problem, the only output of an algorithm is an answer "yes" or "no"
- I.e. we're not asked for a shortest path or a hamiltonian cycle, etc.
- Not as restrictive as it may seem: Rather than asking for the weight of a shortest path from i to j, just ask if there exists a path from ito j with weight at most k
- Such decision versions of optimization problems are no harder than the original optimization problem, so if we show the decision version is hard, then so is the optimization version
- Decision versions are especially convenient when thinking in terms of languages and the Turing machines that accept/reject them

Nebraska

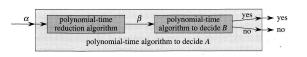
Reductions (2)

• What is a reduction in the NPC sense?

- \bullet Start with two problems A and B, and we want to show that problem B is at least as hard as A
- ullet Will reduce A to B via a polynomial-time reduction by transforming any instance α of A to some instance β of B such that
 - 4 The transformation must take polynomial time (since we're talking about hardness in the sense of efficient vs. inefficient algorithms)
 - ② The answer for α is "yes" if and only if the answer for β is "yes"
- ullet If such a reduction exists, then B is at least as hard as A since if an efficient algorithm exists for B, we can solve any instance of A in polynomial time
- Notation: $A \leq_{\mathbf{P}} B$, which reads as "A is no harder to solve than B, modulo polynomial time reductions"

Nebraska

Reductions (3)



Nebraska

Reductions (4)

- ullet But if we want to prove that a problem B is NPC, do we have to reduce to it every problem in NP?
- No we don't:
 - \bullet If another problem A is known to be NPC, then we know that any problem in NP reduces to it \bullet If we reduce A to B, then any problem in NP can reduce to B via its
 - reduction to A followed by A's reduction to Bullet We then can call B an **NP-hard** problem, which is NPC if it is also in
 - Still need our first NPC problem to use as a basis for our reductions

10 > 10 > 12 > 12 > 12 > 2 900

CIRCUIT-SAT

• Our first NPC problem: CIRCUIT-SAT

- An instance is a boolean combinational circuit (no feedback, no
- Question: Is there a satisfying assignment, i.e. an assignment of inputs to the circuit that satisfies it (makes its output 1)?

4 D > 4 D > 4 E > 4 E > E 994 C

Satisfiable Unsatisfiable

Nebraska

CIRCUIT-SAT (3)

- To prove CIRCUIT-SAT to be NPC, need to show:
 - lacktriangledown CIRCUIT-SAT \in NP; what is its certificate that we can confirm in
 - That any problem in NP reduces to CIRCUIT-SAT
- We'll skip the NP-hardness proof, save to say that it leverages the existence of an algorithm that verifies certificates for some NP

Nebraska

Nebraska

Other NPC Problems

CIRCUIT-SAT (2)

• We'll use the fact that CIRCUIT-SAT is NPC to prove that these other problems are as well: ullet SAT: Does boolean formula ϕ have a satisfying assignment?

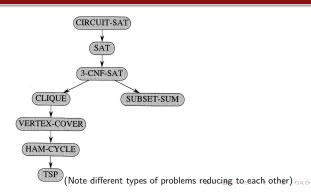
- ullet 3-CNF-SAT: Does 3-CNF formula ϕ have a satisfying assignment?
- ullet CLIQUE: Does graph G have a clique (complete subgraph) of k
- \bullet VERTEX-COVER: Does graph G have a vertex cover (set of vertices that touches all edges) of k vertices?
- ullet HAM-CYCLE: Does graph G have a hamiltonian cycle?
- \bullet TSP: Does complete, weighted graph G have a hamiltonian cycle of total weight $\leq k$?
- ullet SUBSET-SUM: Is there a subset S' of finite set S of integers that sum to exactly a specific target value t?
- Many more in Garey & Johnson's book, with proofs

4 m > 4 d > 4 d > 4 d > 4 d > 9 q Q

4 D > 4 B > 4 B > 4 B > 9 Q C

4D + 4B + 4E + 4E + 990

Nebraska Other NPC Problems (2)



Nebraska

NPC Problem: Formula Satisfiability (SAT)

- ullet Given: A boolean formula ϕ consisting of lacksquare n boolean variables x_1,\ldots,x_n
 - 9 m boolean connectives from \land , \lor , \neg , \rightarrow , and \leftrightarrow
 - Parentheses
- ullet Question: Is there an assignment of boolean values to x_1,\ldots,x_n to make ϕ evaluate to 1?
- ullet E.g.: $\phi = ((x_1 o x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$ has satisfying assignment $x_1=0$, $x_2=0$, $x_3=1$, $x_4=1$ since

$$\begin{array}{lll} \phi & = & ((0 \rightarrow 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0 \\ \\ & = & (1 \lor \neg ((1 \leftrightarrow 1) \lor 1)) \land 1 \\ \\ & = & (1 \lor \neg (1 \lor 1)) \land 1 \\ \\ & = & (1 \lor 0) \land 1 \\ \\ & = & 1 \end{array}$$

SAT is NPC

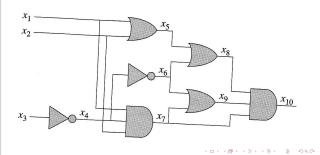
- \bullet SAT is in NP: ϕ 's satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- \bullet SAT is NP-hard: Will show CIRCUIT-SAT \leq_{P} SAT by reducing from CIRCUIT-SAT to SAT
- \bullet In reduction, need to map any instance (circuit) C of CIRCUIT-SAT to *some* instance (formula) ϕ of SAT such that C has a satisfying assignment if and only if ϕ does
- Further, the time to do the mapping must be polynomial in the size of the circuit, implying that ϕ 's representation must be polynomially

4 D > 4 B > 4 B > 4 B > B 9900

Nebraska

SAT is NPC (2)

Define a variable in ϕ for each wire in C:



Nebraska

SAT is NPC (3)

ullet Then define a term of ϕ for each gate that defines the function for that gate:

$$\phi = x_{10} \quad \wedge \quad (x_4 \leftrightarrow \neg x_3)$$

$$\wedge \quad (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge \quad (x_6 \leftrightarrow \neg x_4)$$

$$\wedge \quad (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge \quad (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\wedge \quad (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge \quad (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9))$$

Nebraska

SAT is NPC (4)

- ullet Size of ϕ is polynomial in size of C (number of gates and wires)
- \Rightarrow If C has a satisfying assignment, then the final output of the circuit is 1 and the value on each internal wire matches the output of the gate that feeds it
 - \bullet Thus, ϕ evaluates to 1
- \Leftarrow If ϕ has a satisfying assignment, then each of ϕ 's clauses is satisfied, which means that each of C's gate's output matches its function applied to its inputs, and the final output is 1
- ullet Since satisfying assignment for $C \Rightarrow$ satisfying assignment for ϕ and vice-versa, we get ${\cal C}$ has a satisfying assignment if and only if ϕ does

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

• Given: A boolean formula that is in 3-conjunctive normal form (3-CNF), which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

 $(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_5 \vee x_1)$

ullet Question: Is there an assignment of boolean values to x_1,\dots,x_n to make the formula evaluate to 1?

40 × 40 × 42 × 42 × 2 990

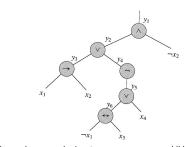
Nebraska

3-CNF-SAT is NPC

- 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time \bullet 3-CNF-SAT is NP-hard: Will show SAT $\leq_{\mbox{\bf P}}$ 3-CNF-SAT
- \bullet Again, need to map any instance ϕ of SAT to some instance ϕ''' of
- - lacktriangle Parenthesize ϕ and build its *parse tree*, which can be viewed as a circuit
 - Assign variables to wires in this circuit, as with previous reduction, yielding ϕ' , a conjunction of terms Use the truth table of each clause ϕ'_i to get its DNF, then convert it
 - to CNF φ"
 - Add auxillary variables to each ϕ_i'' to get three literals in it, yielding ϕ_i'''
 - **9** Final CNF formula is $\phi''' = \bigwedge_i \phi_i'''$

4 m > 4 m >

 $\phi = ((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$



Might need to parenthesize ϕ to put at most two children per node

Nebraska

Assign Variables to wires

 $\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2)) \land (y_2 \leftrightarrow (y_3 \lor y_4)) \land$ $(y_3 \leftrightarrow (x_1 \rightarrow x_2)) \land (y_4 \leftrightarrow \neg y_5) \land (y_5 \leftrightarrow (y_6 \lor x_4)) \land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$

4 D F 4 B F 4 E F 4 E F 9 Q P

Nebraska

Convert Each Clause to CNF

- Consider first clause $\phi_1' = (y_1 \leftrightarrow (y_2 \land \neg x_2))$
- Truth table:

y_1	y_2	x_2	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

• Can now directly read off DNF of negation:

 $\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$

• And convert it to CNF:

 $\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$

Nebraska

Add Auxillary Variables

- Based on our construction, $\phi = \phi'' = \bigwedge_i \phi''_i$, where each ϕ''_i is a CNF formula each with at most three literals per clause
- But we need to have exactly three per clause!
- Simple fix: For each clause C_i of ϕ'' ,
 - $\ensuremath{\mathbf 0}$ If C_i has three distinct literals, add it as a clause in $\phi^{\prime\prime\prime}$
 - $\textbf{@} \ \ \text{If} \ C_i = (\ell_1 \lor \ell_2) \ \text{for distinct literals} \ \ell_1 \ \text{and} \ \ell_2, \ \text{then add to} \ \phi'''$
 - $(\ell_1 \vee \ell_2 \vee p) \wedge (\ell_1 \vee \ell_2 \vee \neg p)$ If $C_i = (\ell)$, then add to ϕ''' $(\ell \vee p \vee q) \wedge (\ell \vee p \vee \neg q) \wedge (\ell \vee \neg p \vee q) \wedge (\ell \vee \neg p \vee \neg q)$
- ullet p and q are **auxillary variables**, and the combinations in which they're added result in a logically equivalent expression to that of the original clause, regardless of the values of p and q

4 m > 4 d > 4 d > 4 d > 4 d > 9 q Q

Proof of Correctness of Reduction

Nebraska

- \bullet ϕ has a satisfying assignment iff $\phi^{\prime\prime\prime}$ does
 - $\textbf{ 0} \ \, \text{CIRCUIT-SAT reduction to SAT implies satisfiability preserved from } \phi$ to ϕ'
 - ② Use of truth tables and DeMorgan's Law ensures ϕ'' equivalent to ϕ'
 - **3** Addition of auxillary variables ensures ϕ''' equivalent to ϕ''
- ullet Constructing ϕ''' from ϕ takes polynomial time
 - $oldsymbol{0}$ ϕ' gets variables from ϕ , plus at most one variable and one clause per operator in ϕ
 - f 2 Each clause in ϕ' has at most 3 variables, so each truth table has at most 8 rows, so each clause in ϕ' yields at most 8 clauses in ϕ''
 - $\ensuremath{\mathfrak{g}}$ Since there are only two auxillary variables, each clause in ϕ'' yields at most 4 in ϕ'''
 - Thus size of ϕ''' is polynomial in size of ϕ , and each step easily done in polynomial time

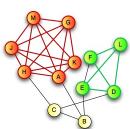
4D> 4@> 4E> 4E> E 990

Nebraska

NPC Problem: Clique Finding (CLIQUE)

ullet Given: An undirected graph G=(V,E) and value k

 \bullet Question: Does G contain a clique (complete subgraph) of size k?



CLIQUE is NPC

- CLIQUE is in NP: A list of vertices in the clique certifies that the answer is "yes" and this can be easily checked in poly time
- ullet CLIQUE is NP-hard: Will show 3-CNF-SAT \leq_{P} CLIQUE by mapping any instance ϕ of 3-CNF-SAT to some instance $\langle G,k\rangle$ of CLIQUE
 - Seems strange to reduce a boolean formula to a graph, but we will show that ϕ has a satisfying assignment iff G has a clique of size k
 - Caveat: the reduction merely preserves the iff relationship; it does not try to directly solve either problem, nor does it assume it knows what the answer is

4 D > 4 B > 4 B > 4 B > B 9900

Nebraska

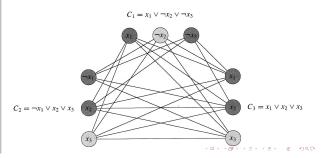
The Reduction

- ullet Let $\phi = C_1 \wedge \cdots \wedge C_k$ be a 3-CNF formula with k clauses
- \bullet For each clause $C_r=(\ell_1^r\vee\ell_2^r\vee\ell_3^r)$ put vertices $v_1^r,\,v_3^r,$ and v_3^r into V
- $\bullet \ \, \mathsf{Add} \ \, \mathsf{edge} \, \, (v_i^r, v_j^s) \, \, \mathsf{to} \, E \, \, \mathsf{if} :$
 - ① $r \neq s$, i.e. v_i^r and v_j^s are in separate triples ② ℓ_i^r is not the negation of ℓ_j^s
 - Obviously can be done in polynomial time

Nebraska

The Reduction (2)

 $\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$ Satisfied by $x_2 = 0$, $x_3 = 1$



Nebraska

The Reduction (3)

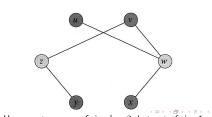
- \Rightarrow If ϕ has a satisfying assignment, then at least one literal in each clause is true
- Picking corresponding vertex from a true literal from each clause yields a set V^\prime of k vertices, each in a distinct triple
- ullet Since each vertex in V' is in a distinct triple and literals that are negations of each other cannot both be true in a satisfying assignment, there is an edge between each pair of vertices in ${\cal V}^\prime$
- \bullet V' is a clique of size k
- \Leftarrow If G has a size-k clique V', can assign 1 to corresponding literal of each vertex in V^\prime
- Each vertex in its own triple, so each clause has a literal set to 1
- Will not try to set both a literal and its negation to 1
- Get a satisfying assignment

+ = > + = > + = > + = > + 9 < 0 <

Nebraska

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

- A vertex in a graph is said to cover all edges incident to it • A vertex cover of a graph is a set of vertices that covers all edges in the graph
- ullet Given: An undirected graph G=(V,E) and value k
- Question: Does G contain a vertex cover of size k?



Nebraska

VERTEX-COVER is NPC

- VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies that the answer is "yes" and this can be easily checked in poly time
- ullet VERTEX-COVER is NP-hard: Will show CLIQUE \leq_P VERTEX-COVER by mapping any instance $\langle G,k\rangle$ of CLIQUE to some instance $\langle G', k' \rangle$ of VERTEX-COVER
- \bullet Reduction is simple: Given instance $\langle G=(V,E),k\rangle$ of CLIQUE, instance of VERTEX-COVER is $\langle \overline{G}, |V|-k \rangle$, where $\overline{G}=(V,\overline{E})$ is G's complement:

$$\overline{E} = \{(u, v) : u, v \in V, u \neq v, (u, v) \not\in E\}$$

• Easily done in polynomial time

Nebraska Lincoln

Proof of Correctness

CSCE423/82

Introduction
Proofs of NPC
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER

- \Rightarrow Assume G has a size-k clique $V' \subseteq V$
- $\bullet \ \, {\rm Consider} \,\, {\rm edge} \,\, (u,v) \in \overline{E}$
- If it's in \overline{E} , then $(u,v) \not\in E$, so at least one of u and v (which cover (u,v)) is not in V', so at least one of them is in $V \setminus V'$
- \bullet This holds for each edge in $\overline{E},$ so $V\setminus V'$ is a vertex cover of \overline{G} of size |V|-k
- \Leftarrow Assume \overline{G} has a size-(|V|-k) vertex cover V'
- ullet For each $(u,v)\in \overline{E}$, at least one of u and v is in V'
- By contrapositive, if $u, v \notin V'$, then $(u, v) \in E$
- \bullet Since every pair of nodes in $V\setminus V'$ has an edge between them, $V\setminus V'$ is a clique of size |V|-|V'|=k

4 m > 4 m >

Nebraska Lincoln

NPC Problem: Subset Sum (SUBSET-SUM)

CSCE423/8

Introduction
Proofs of NPC
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER

- \bullet Given: A finite set S of positive integers and a positive integer $\mbox{target}\ t$
- ullet Question: Is there a subset $S'\subseteq S$ whose elements sum to t?
- \bullet E.g. $S=\{1,2,7,14,49,98,343,686,2409,2793,16808,17206,117705,117993\}$ and t=138457 has a solution

 $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$

+ = > + = > + = > + = > + 9 < 0 <

37 / 43

Nebraska

SUBSET-SUM is NPC

CSCE423/82

Introduction
Proofs of NP
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEXCOVER
SUBSET-SUM

- \bullet SUBSET-SUM is in NP: The subset S' certifies that the answer is "yes" and this can be easily checked in poly time
- SUBSET-SUM is NP-hard: Will show 3-CNF-SAT $\leq_{\bf P}$ CLIQUE by mapping any instance ϕ of 3-CNF-SAT to some instance $\langle S,t\rangle$ of SUBSET-SUM
- Make two reasonable assumptions about ϕ :
 - $\ensuremath{ \bullet}$ No clause contains both a variable and its negation
 - Each variable appears in at least one clause

□ > <**♂** > < ≥ > < ∶

The Reduction

CSCE423/8

ntroduction
Proofs of NPC
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEX.

- \bullet Let ϕ have k clauses C_1,\ldots,C_k over n variables x_1,\ldots,x_n
- \bullet Reduction creates two numbers in S for each variable x_i and two numbers for each clause C_j
- \bullet Each number has n+k digits, the most significant n tied to variables and least significant k tied to clauses
 - $\bullet \ \ \, \text{Target} \, t \, \text{has a 1 in each digit tied to a variable and a 4 in each digit tied to a clause}$
 - $oldsymbol{\Theta}$ For each x_i , S contains integers v_i and v_i' , each with a 1 in x_i 's digit and 0 for other variables. Put a 1 in C_j 's digit for v_i if x_i in C_j , and a 1 in C_j 's digit for v_i' if $\neg x_i$ in C_j
 - $lack {f Gr}$ For each C_j , S contains integers s_j and s_j' , where s_j has a 1 in C_j 's digit and 0 elsewhere, and s_j' has a 2 in C_j 's digit and 0 elsewhere
- Greatest sum of any digit is 6, so no carries when summing integers
- Can be done in polynomial time

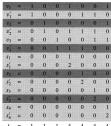
Nebraska

The Reduction (2)

CSCE423/823

Proofs of NPC
Problems
SAT
3-CNF-SAT
CLIQUE
VERTEX.
COVER
SUBSET-SUM

$$\begin{split} C_1 &= (x_1 \vee \neg x_2 \vee \neg x_3), \ C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3), \\ C_3 &= (\neg x_1 \vee \neg x_2 \vee x_3), \ C_4 = (x_1 \vee x_2 \vee x_3) \\ \xrightarrow[x_1 \ x_2 \ x_3 \ C_1 \ C_2 \ C_3 \ C_4 \]} C_4 = (x_1 \vee x_2 \vee x_3) \end{split}$$



 $x_1 = 0, x_2 = 0, x_3 = 1$

Nebraska

Proof of Correctness

CSCE423/8

Proofs of NPC Problems SAT 3-CNF-SAT CLIQUE VERTEX-COVER

- \Rightarrow If $x_i=1$ in ϕ 's satisfying assignment, SUBSET-SUM solution S' will have v_i , otherwise v_i'
- \bullet For each variable-based digit, the sum of the elements of S' is 1
- \bullet Since each clause is satisfied, each clause contains at least one literal with the value 1, so each clause-based digit sums to 1, 2, or 3
- \bullet To match each clause-based digit in t, add in the appropriate subset of slack variables s_i and s_i'

10110101010

Nebraska Proof of Correctness (2)

- $\leftarrow \text{ In SUBSET-SUM solution } S' \text{, for each } i=1,\dots,n \text{, exactly one of } v_i$ and v_i^\prime must be in S^\prime , or sum won't match t
- \bullet If $v_i \in S'$, set $x_i = 1$ in satisfying assignment, otherwise we have $v_i' \in S'$ and set $x_i = 0$
- \bullet To get a sum of 4 in clause-based digit $C_j,\,S'$ must include a v_i or v_i' value that is 1 in that digit (since slack variables sum to at most 3)
- ullet Thus, if $v_i \in S'$ has a 1 in C_j 's position, then x_i is in C_j and we set $x_i=1$, so C_j is satisfied (similar argument for $v_i'\in S'$ and setting $x_i = 0$
- \bullet This holds for all clauses, so ϕ is satisfied

4 D > 4 B > 4 E > 4 E > E 996