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Introduction

Can use a directed graph as a flow network to model:

o Data through communication networks, water/oil /gas through pipes,
assembly lines, etc.

A flow network is a directed graph with two special vertices: source s
that produces flow and sink t that takes in flow

Each directed edge is a conduit with a certain capacity (e.g. 200
gallons/hour)

Vertices are conduit junctions

Except for s and ¢, flow must be conserved: The flow into a vertex
must match the flow out

Maximum flow problem: Given a flow network, determine the
maximum amount of flow that can get from s to ¢

Other application: Bipartite matching
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AL e A flow network G = (V, E) is a directed graph in which each edge
(u,v) € E has a nonnegative capacity c(u,v) > 0

Introduction o If (u, U) € E, c(u,v) =0

Flow Networks @ Assume that every vertex in V' lies on some path from the source

Welatsn vertex s € V to the sink vertext € V

Multiple Sources
and Sinks

FertHFul e Edmonton Saskatoon
Method

Edmonds-Karp

Algorithm
_ Vancouver 10 <0 Wmmpeg
Maximum
Bipartite
Matching
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@ A flow in graph G is a function f: V x V — R that satisfies:
Capacity constraint: For all u,v € V, f(u,v) < ¢(u,v) (flow should
not exceed capacity)

Skew symmetry: For all u,v € V, f(u,v) = —f(v,u) (for
convenience; flow defined for all pairs of vertices)

Flow conservation: For all u € V'\ {s,t},

@ The

Zf(u,v) =0

veV
(flow entering a vertex = flow leaving)
value of a flow is the flow out of s (= flow into ¢):

1= fls,0) =D flv,t)

veV veV

@ Maximum flow problem: given graph and capacities, find a flow of
maximum value
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Flow Example

What is the value of this flow?
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@ For convenience, we will also use set notation in f: For X, Y C V,

Introduction

FXY) =33 fz,y)

More Notation

Multple Sources zeX yeY
Meshod e Lemma: If G = (V, E) is a flow network and f is a flow in G, then
i?gvzz:ﬁ:;Karp Q Foral X CV, f(X,X)=0
_ Q Forall XY CV, f(X,)Y)=—-f(Y,X)
B © Forall X,Y,ZCV with XNY =0,
Sacshine f(XuY,2)=f(X,Z2)+ f(Y,Z) and

f(Z,XUY)=f(Z X))+ f(Z,)Y)
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Multiple Sources and Sinks

Might have cases where there are multiple sources and/or sinks; e.g.
if there are multiple factories producing products and/or multiple
warehouses to ship to

Can easily accommodate graphs with multiple sources s1, ..., s and
multiple sinks t1,...,t,

Add to G a supersource s with an edge (s, s;) for i € {1,...,k} and
a supersink t with an edge (¢;,t) for j € {1,...,¢}

Each new edge has a capacity of oo
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Multiple

Sources and Sinks (2)
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@ A method (rather than specific algorithm) for solving max flow

Introduction

@ Multiple ways of implementing, with varying running times

Flow Networks

@ Core concepts:

Ford-Fulkerson

€° ©Q Residual network: A network G'¢, which is G with capacities reduced
Networks based on the amount of flow f already going through it

Augmentation @ Augmenting path: A simple path from s to ¢ in residual network G
lgmenting

o = If such a path exists, then can push more flow through network
“T/'A'é_;fe”,i © Cut: A partition of V into S and T where s € S and t € T'; can
E‘?fé?ﬁ”h‘f“"" measure net flow and capacity crossing a cut

Eample @ Method repeatedly finds an augmenting path in residual network,
Analysis of . H

Ford: Fulkerson adds in flow along the path, then updates residual network

Edmonds-Kar

Algorithm °
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Flow Networks IRT
Initialize flow f to O
Ford-Fulkerson . . . . .
Method 2 while there exists augmenting path p in residual
Festihel network Gy do

Networks

Flow 3 augment flow f along p

Augmentation

Augmenting
Augr 4 end

Max-Fl,
Min-Cut - 5 return f

Theorem

Fora Fulkerson Algorithm 1: Ford-Fulkerson-Method(G, s, t)

Algorithm
Ford-Fulkerson
Example

Analysis of
Ford-Fulkerson

Edmonds-Karp
Algorithm

M%m n
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Residual Networks

@ Given flow network GG with capacities ¢ and flow f, residual network
Gy consists of edges with capacities showing how one can change
flow in G

@ Define residual capacity of an edge as

c(u,v) — f(u,v) if (u,v) € E

cr(u,v) =< flv,u) if (v,u) e £
0 otherwise
o E.g. if ¢(u,v) =16 and f(u,v) = 11, then cf(u,v) =5 and
cr(v,u) =11

@ Then can define Gy = (V, Ey) as
E; ={(u,v) € VxV:cs(u,v) >0}

@ So Gy will have some edges not in (G, and vice-versa
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Residual Networks (2)
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Flow Augmentation

Gy is like a flow network (except that it can have an edge and its
reversal); so we can find a flow within it

If fisaflowin G and f"is a flow in G, can define the
augmentation of f by f’ as

/ _ f(ua U) + f’(u,v) - f/(vv ’LL) if (uv U) S
(1), v) = { 0 otherwise
Lemma: f 1 f'is a flow in G with value |f 1 f'| = |f| + | f/|

Proof: Not difficult to show that f 1 f’ satisfies capacity constraint
and and flow conservation; then show that |f 1 f'| = |f| + | /|
(pp. 718-719)

Result: If we can find a flow f’ in G, we can increase flow in G
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Augmenting Path

@ By definition of residual network, an edge (u,v) € Ef with
c¢(u,v) > 0 can handle additional flow

@ Since edges in E all have positive residual capacity, it follows that if
there is a simple path p from s to ¢ in G, then we can increase flow
along each edge in p, thus increasing total flow

o We call p an augmenting path

@ The amount of flow we can put on p is p's residual capacity:

cf(p) = min{cs(u,v) : (u,v) is on p}
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?"?J-Vgiﬂ:‘ p is shaded; what is Cf(p).
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Augmenting Path (3)

e Lemma: Let G = (V, E) be a flow network, f be a flow in G, and p
be an augmenting path in G¢. Define f, : V x V — R as

| cf(p) if(u,v) €p
Tplu,v) = { 0 otherwise
Then f, is a flow in G¢ with value |f,| = cf(p) > 0

e Corollary: Let G, f, p, and f, be as above. Then f 1 f, is a flow in
G with value [f 1 fp| = |f| + | fp] > | f]
@ Thus, every augmenting path increases flow in G

@ When do we stop? Will we have a maximum flow if there is no
augmenting path?
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Max-Flow Min-Cut Theorem

Used to prove that once we run out of augmenting paths, we have a
maximum flow

A cut (S,T) of a flow network G = (V, E) is a partition of V into
SCVandT=V\Ssuchthatse SandteT

@ Net flow across the cut (S,T) is

f(SvT) = ZZf(uvU)_ZZf(U7u)

ueSveT ueSveT

Capacity of cut (S,T) is
c(S,T) = Z Z c(u,v)
ueS veT

@ A minimum cut is one whose capacity is smallest over all cuts
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@ Lemma: For any flow f, the value of f is the same as the net flow
across any cut; i.e. f(S,T) = |f] for all cuts (S,T)

Introduction o Corollary: The value of any flow f in G is upperbounded by the
Flow Networks capacity of any cut of G

Ford-Fulkerson o Proof:

Method

Residual

i = s

Augmentation

é:g:nenting = E E f(u, U) — E E f(’U, ’LL)
gl ueSveT ueS veT

Theorem

= — < DY fuw)

Algorithm

Ford-Fulkerson ueS veT

Example

A < g E c(u,v)

Edmonds-Karp ueS veT

Algorithm

Mapgmyg = oST)
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@ Max-Flow Min-Cut Theorem: If f is a flow in flow network G,
then these statements are equivalent:

Flow Networks

Ford-Fulkerson

Method @ f is a maximum flow in G

e @ G has no augmenting paths

il Q |f| = ¢(S,T) for some (i.e. minimum) cut (S,T) of G

e Proof: Show (1) = (2) = (3) = (1)

Min-Cut

A e (1) = (2): If G has augmenting path p, then f, > 0 and

o Lf 1 fol = IfI + 1 fol > |f]

Ford-Fulkerson
Example

Analysis of
Ford-Fulkerson

Edmonds-Karp
Algorithm
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Max-Flow Min-Cut Theorem (5)

@ (2) = (3): Assume G has no path from s to ¢ and define
S={veV:iswovinGfland T =V\S5
e (S,T) is a cut since it partitions V, s € Sandt €T
o Consider u € S and v € T
o If (u,v) € E, then f(u,v) = ¢(u,v) since otherwise cs(u,v) >0 =
(u,v) e Ef = vesS
o If (v,u) € E, then f(v,u) = 0 since otherwise we'd have
cr(u,v) = f(v,u) >0 = (u,v) € Ef =ves
o If (u,v) € E and (v,u) &€ E, then f(u,v) = f(v,u) =0
o Thus (by applying the Lemma as well)

ueSveT veET ueS
= ZZc(u,v) - ZZOZC(S’T)
ueSveT veT ues
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Ford-Fulkerson o (3) = (1):

Method

Residual o Corollary says that |f| < ¢(S’,T") for all cuts (S’,T")
Fon o We've established that |f| = ¢(S,T)

Flow

Augmentation ,

Allgmenting = |f| can’t be any larger
Path . .

Max-Flow = fis a maximum flow
Min-Cut

Theorem

Basic

Ford-Fulkerson

Algorithm

Ford-Fulkerson

Example

Analysis of
Ford-Fulkerson

Edmonds-Karp
Algorithm

Masgm 4@
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1 for each edge (u,v) € E do

2 =
Introduction 3 d f(u, ’l)) 0

en
Flow Networks 4 while there exists path p from s tot in Gy do
E/‘I’fd}fg'kefson 5 cf(p) = min{cy(u,v) : (u,v) is in p}
etho

—— 6 for each edge (u,v) € p do
Ef‘wm“ 7 if (u,v) € E then
Augmentation 8 f(u,v) = f(u,v) +cp(p)
Augmenting
Path 9 end
Mccu” 10 else
Theorem
Basic 11 f(vv u) = f(v,u) - cf(p)
e 12 end
Egradn}i?'e‘kerson 13 end
Analysis of
Ford-Fulkerson 14 end
Edmonds-K -
dpatng Algorithm 2: Ford-Fulkerson(G, s, t)
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Ford-Fulkerson Example




Ne‘BWERS\YV]or

Lincoln

CSCE423/823

Introduction
Flow Networks

Ford-Fulkerson
Method
Residual
Networks
Flow
Augmentation

Augmenting
Path
Max-Flow
Min-Cut
Theorem
Basic
Ford-Fulkerson
Algorithm

Ford-Fulkerson
Example

Analysis of
Ford-Fulkerson

Edmonds-Karp
Algorithm

Mazgm 4@

Ford-Fulkerson Example (2)




Weverlel Analysis of Ford-Fulkerson

Lincoln

CSCE423/823

@ Assume all of G's capacities are integers

o If not, but values still rational, can scale them
o If values irrational, might not converge ~

Introduction

Flow Networks

@ If we choose augmenting path arbitrarily, then | f| increases by at

Ford-Fulkerson

Method least one unit per iteration = number of iterations is < |f*| = value
Etf! of max flow

g o |Es| <2|E|

e e Every vertex is on a path from s to t = |V| = O(|E|)

EldFth\k = Finding augmenting path via BFS or DFS takes time O(|E]), as do
e initialization and each augmentation step

FotBieson e Total time complexity: O(|E||f*|)

Agorthm @ Not polynomial in size of input! (What is size of input?)
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Example of Large |f*|

Arbitrary choice of augmenting path can result in small increase in |f|
each step

Takes 2 x 10% augmentations
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@ Uses Ford-Fulkerson Method

Introduction

@ Rather than arbitrary choice of augmenting path p from s to ¢ in Gy,
choose one that is shortest in terms of number of edges

Flow Networks

Ford-Fulkerson

Method e How can we easily do this?

e e Will show time complexity of O(|V||E|?), independent of | f*|

“B/Ii:zir:wituem @ Proof based on d¢(u,v), which is length of shortest path from u to v
Matching in Gy, in terms of number of edges

@ Lemma: When running Edmonds-Karp on G, for all vertices
v € V' \ {s,t}, shortest path distance §¢(u,v) in G increases
monotonically with each flow augmentation

28/36
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Edmonds-Karp Algorithm (2)

@ Theorem: When running Edmonds-Karp on G, the total number of
flow augmentations is O(|V'||E|)
e Proof: Call an edge (u,v) critical on augmenting path p if

cr(p) = cp(u,v)

@ When (u,v) is critical for the first time, d¢(s,v) = d¢(s,u) + 1
@ At the same time, (u,v) disappears from residual network and does
not reappear until its flow decreases, which only happens when (v, )
appears on an augmenting path, at which time
(5f/(s,u) = (5f/(8,’l)) +1
> 0f(s,v) +1 (from Lemma)
= O0f(s,u)+2
@ Thus, from the time (u,v) becomes critical to the next time it does,

u's distance from s increases by at least 2
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Edmonds-Karp Algorithm (3)

@ Since u's distance from s is at most |V| — 2 (because u # t) and at
least 0, edge (u,v) can be critical at most |V|/2 times

@ There are at most 2|E/| edges that can be critical in a residual
network

@ Every augmentation step has at least one critical edge

= Number of augmentation steps is O(|V||E|), instead of O(|f*|) in
previous algorithm

= Edmonds-Karp time complexity is O(|V || E|?)
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@ In an undirected graph G = (V, E), a matching is a subset of edges
M C FE such that for all v € V, at most one edge from M is incident
on v

Introduction
Flow Networks

Ford-Fulkerson

LISthed e If an edge from M is incident on v, v is matched, otherwise

Edmonds-Karp

Algorithm unmatChed

Maximunm @ Problem: Find a matching of maximum cardinality

Ipartite

e o Special case: G is bipartite, meaning V partitioned into disjoint sets
xample

Gasting Bipartite L and R and all edges of £ go between L and R

Max Flow
@ Applications: Matching machines to tasks, arranging marriages
between interested parties, etc.

31/36
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Casting Bipartite
Matching as
Max Flow

Matching Example

M| =2

R
|M| =3 (maximum)
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Introduction

e Nefwaie @ Can cast bipartite matching problem as max flow

porc-Fulkerson @ Given bipartite graph G = (V, E), define corresponding flow network
Edmonds-Karp G, = (Vl? El):

Algorithm V/ — V U {S, t}

Maximum

Mesehing E'={(s,u) :u e L}U{(u,v) : (u,v) € E}U{(v,t) : v € R}
Example

&affl?n?é’:““e o c(u,v) =1 forall (u,v) € E'

Max Flow

33/36
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Casting Bipartite Matching as Max Flow (2)

Value of flow across cut (L U {s}, RU {t}) equals |M]|
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e Lemma: Let G = (V, E) be a bipartite graph with V' paritioned into
L and R and let G’ = (V', E’) be its corresponding flow network. If

Introduction M is a matching in G, then there is an integer-valued flow f in G’
Flow Networks with value |f| = |M|. Conversely, if there is an integer-valued flow f
Forc Fulkerson in G, then there is a matching M in G with cardinality |M| = |f]|.

ERR e Proof: = If (u,v) € M, set f(s,u) = f(u,v) = f(v,t) =1
Algerithm o Set flow of all other edges to 0

B o Flow satisfies capacity constraint and flow conservation
Matching o Flow across cut (L U {s}, RU{t}) is | M|

Example

Vo I o <« Let f be integer-valued flow in G/, and set

Max Flow

M ={(u,v):u € L,v € R, flu,v) >0}

Any flow into v must be exactly 1 in and exactly 1 out on one edge
Similar argument for v € R, so M is a matching with [M| = |f]

35/36
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Introduction

@ Theorem: If all edges in a flow network have integral capacities,
then the Ford-Fulkerson method returns a flow with value that is an

Flow Networks

Ford-Fulkerson

Method integer, and for all (u,v) € V, f(u,v) is an integer

ifg";:?ﬁ;“fp @ Since the corresponding flow network for bipartite matching uses all
Masimum integer capacities, can use Ford-Fulkerson to solve matching problem
Bipartite . . . .

Matching @ Any matching has cardinality O(|V]), so the corresponding flow
G network has a maximum flow with value |f*| = O(|V]), so time
Matching as . . .

ARl complexity of matching is O(|V||E|)

36/36
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