

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 07 — Maximum Flow (Chapter 26)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

- Can use a directed graph as a *flow network* to model:
 - Data through communication networks, water/oil/gas through pipes, assembly lines, etc.
- ullet A flow network is a directed graph with two special vertices: source s that produces flow and $sink\ t$ that takes in flow
- Each directed edge is a conduit with a certain capacity (e.g. 200 gallons/hour)
- Vertices are conduit junctions
- Except for s and t, flow must be conserved: The flow into a vertex must match the flow out
- Maximum flow problem: Given a flow network, determine the maximum amount of flow that can get from s to t
- Other application: Bipartite matching

Flow Networks

CSCE423/823

Introduction

Flow Networks

Example
More Notation
Multiple Sources
and Sinks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

- A flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity c(u, v) > 0
- If $(u,v) \not\in E$, c(u,v) = 0
- Assume that every vertex in V lies on some path from the *source* vertex $s \in V$ to the sink vertex $t \in V$

Flows

CSCE423/823

Introduction

Flow Networks

Example More Notation Multiple Sources and Sinks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

• A flow in graph G is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- **Quantity Constraint:** For all $u,v\in V$, $f(u,v)\leq c(u,v)$ (flow should not exceed capacity)
- **Skew symmetry:** For all $u, v \in V$, f(u, v) = -f(v, u) (for convenience; flow defined for all pairs of vertices)
- **§** Flow conservation: For all $u \in V \setminus \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0$$

(flow entering a vertex = flow leaving)

• The *value* of a flow is the flow out of s (= flow into t):

$$|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

 Maximum flow problem: given graph and capacities, find a flow of maximum value

Flow Example

CSCE423/823

Introduction

Flow Networks

Example

More Notation Multiple Sources and Sinks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

More Notation

CSCE423/823

Introduction

Flow Networks

More Notation

Multiple Sources

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching ullet For convenience, we will also use set notation in $f\colon$ For $X,Y\subseteq V$,

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

- **Lemma**: If G = (V, E) is a flow network and f is a flow in G, then

Multiple Sources and Sinks

CSCE423/823

Introduction

Flow Networks
Example
More Notation
Multiple Sources
and Sinks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching Might have cases where there are multiple sources and/or sinks; e.g.
if there are multiple factories producing products and/or multiple
warehouses to ship to

- ullet Can easily accommodate graphs with multiple sources s_1,\ldots,s_k and multiple sinks t_1,\ldots,t_ℓ
- Add to G a supersource s with an edge (s,s_i) for $i\in\{1,\ldots,k\}$ and a supersink t with an edge (t_j,t) for $j\in\{1,\ldots,\ell\}$
- ullet Each new edge has a capacity of ∞

Multiple Sources and Sinks (2)

CSCE423/823

Introduction

Flow Networks

More Notation
Multiple Sources
and Sinks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

Ford-Fulkerson Method

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Networks
Flow
Augmentation
Augmenting
Path
Max-Flow
Min-Cut
Theorem
Basic
Ford-Fulkerson
Algorithm
Ford-Fulkerson
Example
Analysis of
Ford-Fulkerson
Example

Edmonds-Karp Algorithm

- A method (rather than specific algorithm) for solving max flow
- Multiple ways of implementing, with varying running times
- Core concepts:
 - **1** Residual network: A network G_f , which is G with capacities reduced based on the amount of flow f already going through it
 - ② Augmenting path: A simple path from s to t in residual network G_f \Rightarrow If such a path exists, then can push more flow through network
 - **③** Cut: A partition of V into S and T where $s \in S$ and $t \in T$; can measure net flow and capacity crossing a cut
- Method repeatedly finds an augmenting path in residual network, adds in flow along the path, then updates residual network

Ford-Fulkerson Method (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual Networks Flow Augmentation Augmenting Path Max-Flow Min-Cut Theorem Ford-Fulkerson Algorithm Ford-Fulkerson

Analysis of Ford-Fulkerson

Example

Edmonds-Karp Algorithm

```
Initialize flow f to 0
```

- while there exists augmenting path p in residual network G_f do
- augment flow f along p
- end
- return f

Algorithm 1: Ford-Fulkerson-Method(G, s, t)

Residual Networks

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual

Networks Flow

Augmentation Augmenting Path Max-Flow

Min-Cut Theorem Ford-Fulkerson Algorithm

Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

• Given flow network G with capacities c and flow f, residual network G_f consists of edges with capacities showing how one can change flow in G

Define residual capacity of an edge as

$$c_f(u,v) = \left\{ \begin{array}{ll} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

- \bullet E.g. if c(u,v)=16 and f(u,v)=11, then $c_f(u,v)=5$ and $c_f(v, u) = 11$
- Then can define $G_f = (V, E_f)$ as

$$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

• So G_f will have some edges not in G_f , and vice-versa

Residual Networks (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Residual Networks

Flow

Augmentation

Augmenting Path

Max-Flow Min-Cut Theorem

Basic Ford-Fulkerson

Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp

Algorithm

Flow Augmentation

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual Networks

Flow Augmentation

Augmenting Path Max-Flow Min-Cut Theorem

Min-Cut Theorem Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm • G_f is like a flow network (except that it can have an edge and its reversal); so we can find a flow within it

• If f is a flow in G and f' is a flow in G_f , can define the augmentation of f by f' as

$$(f \uparrow f')(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

- Lemma: $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$
- **Proof:** Not difficult to show that $f \uparrow f'$ satisfies capacity constraint and and flow conservation; then show that $|f \uparrow f'| = |f| + |f'|$ (pp. 718–719)
- Result: If we can find a flow f' in G_f , we can increase flow in G

Augmenting Path

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual Networks Flow Augmentation

Augmentation Augmenting Path

Max-Flow Min-Cut Theorem Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of

Edmonds-Karp Algorithm

- \bullet By definition of residual network, an edge $(u,v)\in E_f$ with $c_f(u,v)>0$ can handle additional flow
- Since edges in E_f all have positive residual capacity, it follows that if there is a simple path p from s to t in G_f , then we can increase flow along each edge in p, thus increasing total flow
- \bullet We call p an augmenting path
- The amount of flow we can put on p is p's residual capacity:

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmenting Path (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual

Networks Flow

Augmentation

Augmenting Path

Max-Flow Min-Cut Theorem Basic Ford-Fulkerson Algorithm

Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

p is shaded; what is $c_f(p)$?

Augmenting Path (3)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual

Max-Flow

Networks
Flow
Augmentation
Augmenting
Path

Min-Cut Theorem Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of

Ford-Fulkerson
Edmonds-Karp
Algorithm

• Lemma: Let G=(V,E) be a flow network, f be a flow in G, and p be an augmenting path in G_f . Define $f_p:V\times V\to \mathbb{R}$ as

$$f_p(u,v) = \left\{ egin{array}{ll} c_f(p) & \mbox{if } (u,v) \in p \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Then f_p is a flow in G_f with value $|f_p|=c_f(p)>0$

- Corollary: Let G, f, p, and f_p be as above. Then $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|$
- ullet Thus, every augmenting path increases flow in G
- When do we stop? Will we have a maximum flow if there is no augmenting path?

Max-Flow Min-Cut Theorem

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method
Residual
Networks
Flow
Augmentation
Augmenting

Path Max-Flow Min-Cut Theorem

Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm Used to prove that once we run out of augmenting paths, we have a maximum flow

- A $cut\ (S,T)$ of a flow network G=(V,E) is a partition of V into $S\subseteq V$ and $T=V\setminus S$ such that $s\in S$ and $t\in T$
- Net flow across the cut (S,T) is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

• Capacity of cut (S,T) is

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

• A minimum cut is one whose capacity is smallest over all cuts

Max-Flow Min-Cut Theorem (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual

Networks

Flow Augmentation Augmenting

Path Max-Flow Min-Cut

Theorem Basic

Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

Maximum

Max-Flow Min-Cut Theorem (3)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual

Networks Flow

Augmentation Augmenting Path

Max-Flow Min-Cut

Theorem

Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

Maximum

- **Lemma:** For any flow f, the value of f is the same as the net flow across any cut; i.e. f(S,T) = |f| for all cuts (S,T)
 - \bullet Corollary: The value of any flow f in G is upperbounded by the capacity of \mbox{any} cut of G
 - Proof:

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

$$\leq \sum_{u \in S} \sum_{v \in T} f(u,v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

$$= c(S,T)$$

Max-Flow Min-Cut Theorem (4)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual Networks

Flow Augmentation Augmenting Path

Max-Flow Min-Cut Theorem

Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of

Ford-Fulkerson
Edmonds-Karp
Algorithm

 Max-Flow Min-Cut Theorem: If f is a flow in flow network G, then these statements are equivalent:

- $oldsymbol{0}$ f is a maximum flow in G
- $oldsymbol{O}_f$ has no augmenting paths
- **Proof:** Show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$
- (1) \Rightarrow (2): If G_f has augmenting path p, then $f_p>0$ and $|f\uparrow f_p|=|f|+|f_p|>|f|$

Max-Flow Min-Cut Theorem (5)

CSCE423/823

Introduction

Flow Networks

I IOW INCLINOINS

Ford-Fulkerson

Method Residual

Networks

Flow Augmentation Augmenting

Path Max-Flow

Min-Cut Theorem

Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm • (2) \Rightarrow (3): Assume G_f has no path from s to t and define $S = \{v \in V : s \leadsto v \text{ in } G_f\}$ and $T = V \setminus S$

- (S,T) is a cut since it partitions V, $s \in S$ and $t \in T$
- Consider $u \in S$ and $v \in T$:
 - If $(u,v) \in E$, then f(u,v) = c(u,v) since otherwise $c_f(u,v) > 0 \Rightarrow (u,v) \in E_f \Rightarrow v \in S$
 - If $(v,u) \in E$, then f(v,u)=0 since otherwise we'd have $c_f(u,v)=f(v,u)>0 \Rightarrow (u,v) \in E_f \Rightarrow v \in S$
 - If $(u,v) \not\in E$ and $(v,u) \not\in E$, then f(u,v)=f(v,u)=0
- Thus (by applying the Lemma as well)

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$
$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0 = c(S,T)$$

Max-Flow Min-Cut Theorem (6)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method

Residual

Networks Flow

Augmentation Augmenting Path

Max-Flow Min-Cut

Min-Cut Theorem

Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

- (3) \Rightarrow (1):
 - Corollary says that $|f| \le c(S', T')$ for all cuts (S', T')
 - We've established that |f| = c(S, T)
 - \Rightarrow |f| can't be any larger
 - $\Rightarrow f$ is a maximum flow

Basic Ford-Fulkerson Algorithm

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Residual Networks

Flow Augmentation

Augmenting Path

Max-Flow Min-Cut Theorem

Basic Ford-Fulkerson

Algorithm Ford-Fulkerson

Example
Analysis of
Ford-Fulkerson

Edmonds-Karp

Algorithm

```
for each edge (u, v) \in E do
          f(u,v)=0
    end
    while there exists path p from s to t in G_f do
          c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
          for each edge (u,v) \in p do
                if (u,v) \in E then
                       f(u,v) = f(u,v) + c_f(p)
                 end
10
                 else
                       f(v, u) = f(v, u) - c_f(p)
11
12
                 end
13
          end
14 end
```

Algorithm 2: Ford-Fulkerson(G, s, t)

Ford-Fulkerson Example

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Ford-Fulkerso Method Residual

Networks Flow Augmentation

Augmenting Path Max-Flow Min-Cut

Theorem Basic Ford-Fulkerson Algorithm

Ford-Fulkerson Example

Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

Maximum

Ford-Fulkerson Example (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual Networks

Flow Augmentation Augmenting

Augmenting Path Max-Flow Min-Cut Theorem

Basic Ford-Fulkerson Algorithm

Ford-Fulkerson Example

Analysis of Ford-Fulkerson

Edmonds-Karp

Algorithm Maximum

Analysis of Ford-Fulkerson

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Residual Networks Flow Augmentation Augmenting Path Max-Flow Min-Cut

Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of

Edmonds-Karp Algorithm

- Assume all of G's capacities are integers
 - If not, but values still rational, can scale them
 - If values irrational, might not converge $\stackrel{...}{\sim}$
- If we choose augmenting path arbitrarily, then |f| increases by at least one unit per iteration \Rightarrow number of iterations is $\leq |f^*| =$ value of max flow
- $|E_f| \le 2|E|$
- ullet Every vertex is on a path from s to $t\Rightarrow |V|=O(|E|)$
- \Rightarrow Finding augmenting path via BFS or DFS takes time O(|E|), as do initialization and each augmentation step
 - Total time complexity: $O(|E||f^*|)$
 - Not polynomial in size of input! (What is size of input?)

Example of Large $|f^*|$

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson

Method Residual

Networks Flow Augmentation Augmenting Path Max-Flow Min-Cut Theorem Basic Ford-Fulkerson Algorithm

Analysis of Ford-Fulkerson

Edmonds-Karp Algorithm

Ford-Fulkerson Example Takes 2×10^6

Arbitrary choice of augmenting path can result in small increase in $\left|f\right|$ each step

Takes 2×10^6 augmentations

Edmonds-Karp Algorithm

CSCE423/823

Introduction

Flow Networks

Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

- Uses Ford-Fulkerson Method
- ullet Rather than arbitrary choice of augmenting path p from s to t in G_f , choose one that is shortest in terms of number of edges
 - How can we easily do this?
- ullet Will show time complexity of $O(|V||E|^2)$, independent of $|f^*|$
- Proof based on $\delta_f(u,v)$, which is length of shortest path from u to v in G_f , in terms of number of edges
- Lemma: When running Edmonds-Karp on G, for all vertices $v \in V \setminus \{s,t\}$, shortest path distance $\delta_f(u,v)$ in G_f increases monotonically with each flow augmentation

Edmonds-Karp Algorithm (2)

CSCE423/823

Introduction

Flow Networks Ford-Fulkerson

Method

Edmonds-Karp Algorithm

Maximum

Bipartite Matching

- **Theorem:** When running Edmonds-Karp on G, the total number of flow augmentations is O(|V||E|)
- **Proof:** Call an edge (u, v) critical on augmenting path p if $c_f(p) = c_f(u, v)$
- When (u, v) is critical for the first time, $\delta_f(s, v) = \delta_f(s, u) + 1$
- \bullet At the same time, (u, v) disappears from residual network and does not reappear until its flow decreases, which only happens when (v, u)appears on an augmenting path, at which time

$$\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$$
 $\geq \delta_f(s,v) + 1$ (from Lemma)
 $= \delta_f(s,u) + 2$

• Thus, from the time (u, v) becomes critical to the next time it does, u's distance from s increases by at least 2

4 D > 4 D > 4 E > 4 E > 9 Q C

Edmonds-Karp Algorithm (3)

CSCE423/823

Introduction

Flow Networks
Ford-Fulkerson

Method

Edmonds-Karp

Edmonds-Karp Algorithm

Maximum Bipartite Matching

- Since u's distance from s is at most |V|-2 (because $u \neq t$) and at least 0, edge (u,v) can be critical at most |V|/2 times
- \bullet There are at most 2|E| edges that can be critical in a residual network
- Every augmentation step has at least one critical edge
- \Rightarrow Number of augmentation steps is O(|V||E|), instead of $O(|f^*|)$ in previous algorithm
- \Rightarrow Edmonds-Karp time complexity is $O(|V||E|^2)$

Maximum Bipartite Matching

CSCE423/823

Introduction

Flow Networks
Ford-Fulkerson

Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

Example
Casting Bipartite
Matching as
Max Flow

- In an undirected graph G=(V,E), a matching is a subset of edges $M\subseteq E$ such that for all $v\in V$, at most one edge from M is incident on v
- If an edge from M is incident on v, v is $\it{matched}$, otherwise $\it{unmatched}$
- Problem: Find a matching of maximum cardinality
- Special case: G is bipartite, meaning V partitioned into disjoint sets L and R and all edges of E go between L and R
- Applications: Matching machines to tasks, arranging marriages between interested parties, etc.

Bipartite Matching Example

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite

Matching

Casting Bipartite
Matching as
Max Flow

Casting Bipartite Matching as Max Flow

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Edmonds-Karp

Algorithm

Maximum

Bipartite

Matching

Matching Example

Casting Bipartite Matching as Max Flow

- Can cast bipartite matching problem as max flow
- Given bipartite graph G=(V,E), define corresponding flow network G'=(V',E'):

$$V' = V \cup \{s, t\}$$

$$E' = \{(s, u) : u \in L\} \cup \{(u, v) : (u, v) \in E\} \cup \{(v, t) : v \in R\}$$

• c(u,v)=1 for all $(u,v)\in E'$

Casting Bipartite Matching as Max Flow (2)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method Edmonds-Karp

Algorithm Maximum

Bipartite Matching Example

Casting Bipartite Matching as Max Flow

Value of flow across cut $(L \cup \{s\}, R \cup \{t\})$ equals $M_{lackbox{--}} = 0$

Casting Bipartite Matching as Max Flow (3)

CSCE423/823

Introduction

Flow Networks

Ford-Fulkerson Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

Example
Casting Bipartite
Matching as
Max Flow

• Lemma: Let G=(V,E) be a bipartite graph with V paritioned into L and R and let G'=(V',E') be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G' with value |f|=|M|. Conversely, if there is an integer-valued flow f in G', then there is a matching M in G with cardinality |M|=|f|.

- **Proof:** \Rightarrow If $(u,v) \in M$, set f(s,u) = f(u,v) = f(v,t) = 1
 - Set flow of all other edges to 0
 - Flow satisfies capacity constraint and flow conservation
 - Flow across cut $(L \cup \{s\}, R \cup \{t\})$ is |M|
 - \leftarrow Let f be integer-valued flow in G', and set

$$M = \{(u, v) : u \in L, v \in R, f(u, v) > 0\}$$

- ullet Any flow into u must be exactly 1 in and exactly 1 out on one edge
- Similar argument for $v \in R$, so M is a matching with |M| = |f|

Casting Bipartite Matching as Max Flow (4)

CSCE423/823

Introduction

Flow Networks

Method

Edmonds-Karp Algorithm

Maximum Bipartite Matching

Example
Casting Bipartite
Matching as
Max Flow

• **Theorem:** If all edges in a flow network have integral capacities, then the Ford-Fulkerson method returns a flow with value that is an integer, and for all $(u,v) \in V$, f(u,v) is an integer

- Since the corresponding flow network for bipartite matching uses all integer capacities, can use Ford-Fulkerson to solve matching problem
- Any matching has cardinality O(|V|), so the corresponding flow network has a maximum flow with value $|f^*| = O(|V|)$, so time complexity of matching is O(|V||E|)