Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 07 — Maximum Flow (Chapter 26)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Spring 2010

4 D > 4 D > 4 E > 4 E > E 9 Q C

414

4 D > 4 D > 4 E > 4 E > E 9 Q C

Nebraska

Introduction

- Can use a directed graph as a flow network to model:
 - Data through communication networks, water/oil/gas through pipes, assembly lines, etc.
- ullet A flow network is a directed graph with two special vertices: source sthat produces flow and $\mathit{sink}\ t$ that takes in flow
- Each directed edge is a conduit with a certain capacity (e.g. 200 gallons/hour)
- Vertices are conduit junctions
- ullet Except for s and t, flow must be conserved: The flow into a vertex must match the flow out
- Maximum flow problem: Given a flow network, determine the maximum amount of flow that can get from \boldsymbol{s} to \boldsymbol{t}
- Other application: Bipartite matching

Nebraska Flow Networks

- ullet A flow network G=(V,E) is a directed graph in which each edge $(u,v) \in E$ has a nonnegative capacity $c(u,v) \geq 0$
- If $(u, v) \notin E$, c(u, v) = 0
- ullet Assume that every vertex in V lies on some path from the source $vertex \ s \in V$ to the $sink \ vertex \ t \in V$

Nebraska

Flows

 \bullet A flow in graph G is a function $f:V\times V\to \mathbb{R}$ that satisfies:

- $\textbf{ Qapacity constraint:} \ \, \text{For all} \ \, u,v\in V \text{, } \, f(u,v) \leq c(u,v) \text{ (flow should } \, v \in V \text{)} \, \text{ }$ not exceed capacity)
- Skew symmetry: For all $u, v \in V$, f(u, v) = -f(v, u) (for convenience; flow defined for all pairs of vertices)
- **§** Flow conservation: For all $u \in V \setminus \{s,t\}$,

$$\sum_{v \in V} f(u, v) = 0$$

(flow entering a vertex = flow leaving)

• The value of a flow is the flow out of s (= flow into t):

$$|f| = \sum_{v \in V} f(s,v) = \sum_{v \in V} f(v,t)$$

• Maximum flow problem: given graph and capacities, find a flow of maximum value

Nebraska

Flow Example

S

What is the value of this flow?

Nebraska

More Notation

ullet For convenience, we will also use set notation in $f\colon$ For $X,Y\subseteq V$,

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

- Lemma: If G = (V, E) is a flow network and f is a flow in G, then
- - $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$

4 D > 4 B > 4 B > 4 B > 9 Q C

Multiple Sources and Sinks

• Might have cases where there are multiple sources and/or sinks; e.g. if there are multiple factories producing products and/or multiple warehouses to ship to

- ullet Can easily accommodate graphs with multiple sources s_1,\dots,s_k and multiple sinks t_1,\dots,t_ℓ
- ullet Add to G a supersource s with an edge (s,s_i) for $i\in\{1,\ldots,k\}$ and a supersink t with an edge (t_i, t) for $j \in \{1, \dots, \ell\}$
- ullet Each new edge has a capacity of ∞

4 D > 4 B > 4 B > 4 B > B 9 9 9

Nebraska

Multiple Sources and Sinks (2)

Nebraska

Ford-Fulkerson Method

• A method (rather than specific algorithm) for solving max flow

- Multiple ways of implementing, with varying running times
- Core concepts:
 - lacktriangledown Residual network: A network G_f , which is G with capacities reduced based on the amount of flow f already going through it
 - $oldsymbol{0}$ Augmenting path: A simple path from s to t in residual network G_f \Rightarrow If such a path exists, then can push more flow through network
 - $\textbf{§} \quad \textit{Cut:} \ \, \mathsf{A} \ \, \mathsf{partition} \ \, \mathsf{of} \ \, V \ \, \mathsf{into} \, \, S \ \, \mathsf{and} \, \, T \ \, \mathsf{where} \, \, s \in S \ \, \mathsf{and} \, \, t \in T; \, \mathsf{can}$ measure net flow and capacity crossing a cut
- Method repeatedly finds an augmenting path in residual network, adds in flow along the path, then updates residual network

Nebraska

Ford-Fulkerson Method (2)

Nebraska

network G_f do $\hbox{augment flow f along p}$ 4 end

5 return f

1 Initialize flow f to 0

Algorithm 1: Ford-Fulkerson-Method(G, s, t)

 ${\bf 2} \ \ {\bf while} \ there \ {\it exists} \ {\it augmenting} \ {\it path} \ p \ in \ residual$

Nebraska

Residual Networks

ullet Given flow network G with capacities c and flow f, residual network ${\it G_f}$ consists of edges with capacities showing how one can change flow in G

• Define residual capacity of an edge as

$$c_f(u,v) = \left\{ \begin{array}{ll} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

- \bullet E.g. if c(u,v)=16 and f(u,v)=11 ,then $c_f(u,v)=5$ and $c_f(v, u) = 11$
- ullet Then can define $G_f=(V,E_f)$ as

$$E_f=\{(u,v)\in V\times V: c_f(u,v)>0\}$$

ullet So G_f will have some edges not in G, and vice-versa

Residual Networks (2)

Flow Augmentation

CSCE423/8

Introduction
Flow Networks
Ford-Fulkerson
Method
Residual
Networks

Flow
Augmentation
Augmenting
Path
Max-Flow
Min-Cut
Theorem
Basic
Ford-Fulkerson
Algorithm
Ford-Fulkerson
Example
Analysis of
Ford-Fulkerson
Edmonds-Karp
Algorithm
Maydinyugn

- ullet G_f is like a flow network (except that it can have an edge and its reversal); so we can find a flow within it
- If f is a flow in G and f' is a flow in G_f , can define the augmentation of f by f' as

$$(f\uparrow f')(u,v) = \left\{ \begin{array}{ll} f(u,v) + f'(u,v) - f'(v,u) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

- Lemma: $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$
- **Proof:** Not difficult to show that $f \uparrow f'$ satisfies capacity constraint and and flow conservation; then show that $|f \uparrow f'| = |f| + |f'|$ (pp. 718–719)
- ullet Result: If we can find a flow f' in G_f , we can increase flow in G

4 ID > 4

Nebraska

Augmenting Path

CSCE423/8

ntroduction Flow Networks Ford-Fulkerson Method Residual

 $c_f(u,v)>0$ can handle additional flow • Since edges in E_f all have positive residual capacity, it follows that if there is a simple path p from s to t in G_f , then we can increase flow

ullet By definition of residual network, an edge $(u,v)\in E_f$ with

- along each edge in p, thus increasing total flow

 We call p an augmenting path
- ullet The amount of flow we can put on p is p's residual capacity:

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

4 m h 4 # h 4 E h 4 E h E 1990

Nebraska

Augmenting Path (2)

CSCE423/82

Flow Network
Ford-Fulkersor
Method
Residual
Networks
Flow
Augmentation
Augmenting
Path

Max-Flow
Min-Cut
Theorem
Basic
Ford-Fulkerson
Algorithm
Ford-Fulkerson
Example
Analysis of
Ford-Fulkerson
Edmonds-Kar
Algorithm

p is shaded; what is $c_f(p)$?

(B) (B) (E) (E) E (9)(

Nebraska

Augmenting Path (3)

CSCE423/8

Flow Networks
Ford-Fulkerson
Method
Residual
Networks
Flow
Augmentation
Augmenting

Networks
Flow
Augmentation
Augmenting
Path
Max: Flow
Min-Cut
Theorem
Basic
Ford-Fulkerson
Algorithm
Ford-Fulkerson
Example
Analysis of
Ford-Fulkerson

• Lemma: Let G=(V,E) be a flow network, f be a flow in G, and p be an augmenting path in G_f . Define $f_p:V\times V\to \mathbb{R}$ as

$$f_p(u,v) = \left\{ \begin{array}{ll} c_f(p) & \text{if } (u,v) \in p \\ 0 & \text{otherwise} \end{array} \right.$$

Then f_p is a flow in G_f with value $|f_p|=c_f(p)>0$

- \bullet Corollary: Let $G,\,f,\,p,$ and f_p be as above. Then $f\uparrow f_p$ is a flow in G with value $|f\uparrow f_p|=|f|+|f_p|>|f|$
- \bullet Thus, every augmenting path increases flow in ${\cal G}$
- When do we stop? Will we have a maximum flow if there is no augmenting path?

10 × 4**0** × 42 × 42 × 2 × 90

Nebraska

Max-Flow Min-Cut Theorem

CSCE423/82

Introduction
Flow Networks
Ford-Fulkerson
Method
Residual
Networks
Flow
Augmentation

Max-Flow

Basic Ford-Fulkerson Algorithm Ford-Fulkerson Example Analysis of Ford-Fulkerson Edmonds-Karp Algorithm

- Used to prove that once we run out of augmenting paths, we have a maximum flow
- A cut~(S,T) of a flow network G=(V,E) is a partition of V into $S\subseteq V$ and $T=V\setminus S$ such that $s\in S$ and $t\in T$
- ullet Net flow across the cut (S,T) is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

• Capacity of cut (S,T) is

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

A minimum cut is one whose capacity is smallest over all cuts

Edmo Algori

Nebraska

Max-Flow Min-Cut Theorem (2)

What are f(S,T) and c(S,T)?

Max-Flow Min-Cut Theorem (3)

- \bullet Lemma: For any flow f, the value of f is the same as the net flow across any cut; i.e. f(S,T) = |f| for all cuts (S,T)
- ullet Corollary: The value of any flow f in G is upperbounded by the capacity of $\ensuremath{\mathbf{any}}$ cut of G
- Proof:

$$\begin{split} |f| &= & f(S,T) \\ &= & \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u) \\ &\leq & \sum_{u \in S} \sum_{v \in T} f(u,v) \\ &\leq & \sum_{u \in S} \sum_{v \in T} c(u,v) \\ &= & c(S,T) \end{split}$$

Nebraska

Max-Flow Min-Cut Theorem (4)

- ullet Max-Flow Min-Cut Theorem: If f is a flow in flow network G, then these statements are equivalent:
- $\ \, \textbf{ 0} \ \, f \ \, \text{is a maximum flow in } G$
 - \bigcirc G_f has no augmenting paths
- |f| = c(S,T) for some (i.e. minimum) cut (S,T) of G
 - **Proof**: Show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$
 - (1) \Rightarrow (2): If G_f has augmenting path p, then $f_p > 0$ and $|f \uparrow f_p| = |f| + |f_p| > |f|$

+ = > + = > + = > + = > + 9 < 0 <

Nebraska

Max-Flow Min-Cut Theorem (5)

- (2) \Rightarrow (3): Assume G_f has no path from s to t and define $S=\{v\in V: s\leadsto v \text{ in } G_f\}$ and $T=V\setminus S$
 - ullet (S,T) is a cut since it partitions $V,\,s\in S$ and $t\in T$
 - Consider $u \in S$ and $v \in T$:
 - If $(u,v) \in E$, then f(u,v) = c(u,v) since otherwise $c_f(u,v) > 0 \Rightarrow$ $(u,v) \in E_f \Rightarrow v \in S$
 - $\bullet \ \ \mbox{If} \ (v,u) \in E \mbox{, then} \ f(v,u) = 0 \mbox{ since otherwise we'd have}$ $c_f(u,v) = f(v,u) > 0 \Rightarrow (u,v) \in E_f \Rightarrow v \in S$ • If $(u,v) \not\in E$ and $(v,u) \not\in E$, then f(u,v) = f(v,u) = 0
 - Thus (by applying the Lemma as well)

(by applying the Lemma as well)
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0 = c(S,T)$$

Nebraska

Max-Flow Min-Cut Theorem (6)

- (3) \Rightarrow (1):
 - Corollary says that $|f| \leq c(S',T')$ for all cuts (S',T') We've established that |f| = c(S,T)
 - - \Rightarrow |f| can't be any larger \Rightarrow f is a maximum flow

4 m > 4 m > 4 2 > 4 2 > 4 2 > **2** 4 9 9 9 9

Nebraska

Basic Ford-Fulkerson Algorithm

 $\begin{array}{c} \mbox{for each edge}\;(u,v)\in E\;\mbox{do}\\ f(u,v)=0 \end{array}$ 3 end $\begin{array}{ll} \textbf{4} & \textbf{while} \ there \ exists \ path \ p \ from \ s \ to \ t \ in \ G_f \ \textbf{do} \\ \textbf{5} & c_f(p) = \min\{c_f(u,v): (u,v) \ \text{is in} \ p\} \end{array}$ $\begin{array}{c} \text{for each edge } (u,v) \in p \text{ do} \\ \text{if } (u,v) \in E \text{ then} \end{array}$ $f(u,v) = f(u,v) + c_f(p)$ 10 11 else $f(v, u) = f(v, u) - c_f(p)$ 12 13 14 end Algorithm 2: Ford-Fulkerson(G, s, t)

Nebraska

Ford-Fulkerson Example

Nebraska Ford-Fulkerson Example (2)

Nebraska

Analysis of Ford-Fulkerson

- ullet Assume all of G's capacities are integers
 - If not, but values still rational, can scale them
 - If values irrational, might not converge
- ullet If we choose augmenting path arbitrarily, then |f| increases by at least one unit per iteration \Rightarrow number of iterations is $\leq |f^*| = \text{value}$ of max flow
- $|E_f| \le 2|E|$
- Every vertex is on a path from s to $t \Rightarrow |V| = O(|E|)$
- \Rightarrow Finding augmenting path via BFS or DFS takes time O(|E|), as do initialization and each augmentation step
- Total time complexity: $O(|E||f^*|)$
- Not polynomial in size of input! (What is size of input?)

Nebraska

Example of Large $|f^*|$

Arbitrary choice of augmenting path can result in small increase in $\left|f\right|$ each step

Takes 2×10^6 augmentations

Nebraska

Edmonds-Karp Algorithm

- Uses Ford-Fulkerson Method
- \bullet Rather than arbitrary choice of augmenting path p from s to t in G_f , choose one that is shortest in terms of number of edges
 - How can we easily do this?
- Will show time complexity of $O(|V||E|^2)$, independent of $|f^*|$
- ullet Proof based on $\delta_f(u,v)$, which is length of shortest path from u to vin G_f , in terms of number of edges
- ullet Lemma: When running Edmonds-Karp on G, for all vertices $v \in V \setminus \{s,t\}$, shortest path distance $\delta_f(u,v)$ in G_f increases monotonically with each flow augmentation

4 m > 4 m > 4 2 > 4 2 > 4 2 > **2** 4 9 9 9 9

Nebraska

Edmonds-Karp Algorithm (2)

- Theorem: When running Edmonds-Karp on G, the total number of flow augmentations is O(|V||E|)
- ullet Proof: Call an edge (u,v) critical on augmenting path p if $c_f(p) = c_f(u, v)$
- \bullet When (u,v) is critical for the first time, $\delta_f(s,v)=\delta_f(s,u)+1$
- \bullet At the same time, (u, v) disappears from residual network and does not reappear until its flow decreases, which only happens when $\left(v,u\right)$ appears on an augmenting path, at which time

$$\begin{array}{lll} \delta_{f'}(s,u) & = & \delta_{f'}(s,v) + 1 \\ & \geq & \delta_f(s,v) + 1 \text{ (from Lemma)} \\ & = & \delta_f(s,u) + 2 \end{array}$$

ullet Thus, from the time (u,v) becomes critical to the next time it does, u's distance from s increases by at least 2 Nebraska

Edmonds-Karp Algorithm (3)

- \bullet Since u 's distance from s is at most |V|-2 (because $u\neq t)$ and at least 0, edge (u,v) can be critical at most |V|/2 times
- ullet There are at most 2|E| edges that can be critical in a residual
- Every augmentation step has at least one critical edge
- \Rightarrow Number of augmentation steps is O(|V||E|), instead of $O(|f^*|)$ in previous algorithm
- \Rightarrow Edmonds-Karp time complexity is $O(|V||E|^2)$

4 m > 4 m >

Maximum Bipartite Matching

- ullet In an undirected graph G=(V,E), a matching is a subset of edges $M\subseteq E$ such that for all $v\in V$, at most one edge from M is incident
- If an edge from M is incident on v, v is matched, otherwise unmatched
- Problem: Find a matching of maximum cardinality
- \bullet $\mbox{\bf Special case: }G$ is $\mbox{\it bipartite},$ meaning V partitioned into disjoint sets L and R and all edges of E go between L and R
- Applications: Matching machines to tasks, arranging marriages between interested parties, etc.

4 D > 4 B > 4 B > 4 B > 3 8 9 9 9

Nebraska

Bipartite Matching Example

|M| = 2

|M| = 3 (maximum)

Nebraska

Casting Bipartite Matching as Max Flow

• Can cast bipartite matching problem as max flow

ullet Given bipartite graph G=(V,E), define corresponding flow network G' = (V', E'):

$$V' = V \cup \{s, t\}$$

$$E' = \{(s,u) : u \in L\} \cup \{(u,v) : (u,v) \in E\} \cup \{(v,t) : v \in R\}$$

 $\bullet \ c(u,v) = 1 \ \text{for all} \ (u,v) \in E'$

Nebraska

Casting Bipartite Matching as Max Flow (2)

Value of flow across cut $(L \cup \{s\}, R \cup \{t\})$ equals M_{constant}

Nebraska

Casting Bipartite Matching as Max Flow (3)

L and R and let G'=(V',E') be its corresponding flow network. If ${\cal M}$ is a matching in ${\cal G},$ then there is an integer-valued flow f in ${\cal G}'$ with value |f| = |M|. Conversely, if there is an integer-valued flow fin G', then there is a matching M in G with cardinality |M| = |f|.

ullet Lemma: Let G=(V,E) be a bipartite graph with V paritioned into

- ullet Proof: \Rightarrow If $(u,v)\in M$, set f(s,u)=f(u,v)=f(v,t)=1
 - Set flow of all other edges to 0
 - Flow satisfies capacity constraint and flow conservation
 - \bullet Flow across cut $(L \cup \{s\}, R \cup \{t\})$ is |M|
 - $\bullet \ \, \Leftarrow \ \, \mathsf{Let} \,\, f \,\, \mathsf{be} \,\, \mathsf{integer}\text{-}\mathsf{valued} \,\, \mathsf{flow} \,\, \mathsf{in} \,\, G', \, \mathsf{and} \,\, \mathsf{set}$

$$M = \{(u,v) : u \in L, v \in R, f(u,v) > 0\}$$

- ullet Any flow into u must be exactly 1 in and exactly 1 out on one edge
- Any flow into u must be exactly 1 in and stating v = 0. Similar argument for $v \in R$, so M is a matching with |M| = |f|

Nebraska

Casting Bipartite Matching as Max Flow (4)

• Theorem: If all edges in a flow network have integral capacities, then the Ford-Fulkerson method returns a flow with value that is an integer, and for all $(u, v) \in V$, f(u, v) is an integer

• Since the corresponding flow network for bipartite matching uses all integer capacities, can use Ford-Fulkerson to solve matching problem

ullet Any matching has cardinality O(|V|), so the corresponding flow network has a maximum flow with value $|f^*| = O(|V|)$, so time complexity of matching is O(|V||E|)

