

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 06 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall

- Similar to SSSP, but find shortest paths for all pairs of vertices
- Given a weighted, directed graph G=(V,E) with weight function $w:E\to\mathbb{R}$, find $\delta(u,v)$ for all $(u,v)\in V\times V$
- \bullet One solution: Run an algorithm for SSSP |V| times, treating each vertex in V as a source
 - If no negative weight edges, use Dijkstra's algorithm, for time complexity of $O(|V|^3+|V||E|)=O(|V|^3)$ for array implementation, $O(|V||E|\log|V|)$ if heap used
 - \bullet If negative weight edges, use Bellman-Ford and get $O(|V|^2|E|)$ time algorithm, which is $O(|V|^4)$ if graph dense
- Can we do better?
 - ullet Matrix multiplication-style algorithm: $\Theta(|V|^3 \log |V|)$
 - ullet Floyd-Warshall algorithm: $\Theta(|V|^3)$
 - Both algorithms handle negative weight edges

Adjacency Matrix Representation

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

- Will use adjacency matrix representation
- Assume vertices are numbered: $V = \{1, 2, \dots, n\}$
- Input to our algorithms will be $n \times n$ matrix W:

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } (i,j) \in E \\ \infty & \text{if } (i,j) \notin E \end{cases}$$

- For now, assume negative weight cycles are absent
- In addition to distance matrices L and D produced by algorithms, can also build *predecessor matrix* Π , where $\pi_{ij} =$ predecessor of j on a shortest path from i to j, or NIL if i = j or no path exists
 - Well-defined due to optimal substructure property

Printing Shortest Paths

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

```
1 if i == i then
         print i
 3 end
   else if \pi_{ij} == NIL then
         print "no path from " i " to " j " exists"
 6 end
   else
         PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, \pi_{ij})
         print i
10 end
```

Algorithm 1: Print-All-Pairs-Shortest-Path (Π, i, j)

Shortest Paths and Matrix Multiplication

CSCE423/823

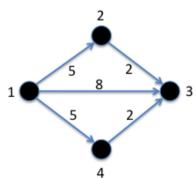
Introduction

Shortest Paths and Matrix Multiplication

Recursive

Bottom-Up Computation Example Improving Running Time

Floyd-Warshall Algorithm • Will maintain a series of matrices $L^{(m)} = \left(\ell_{ij}^{(m)}\right)$, where $\ell_{ij}^{(m)} =$ the minimum weight of any path from i to j that uses at most m edges • Special case: $\ell_{ij}^{(0)} = 0$ if i = j, ∞ otherwise



Recursive Solution

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Recursive

Bottom-Up Computation Example Improving Running Time

Floyd-Warshall Algorithm

- Can exploit optimal substructure property to get a recursive definition of $\ell_{ii}^{(m)}$
- To follow shortest path from i to j using at most m edges, either:
 - lacksquare Take shortest path from i to j using $\leq m-1$ edges and stay put, or
 - ② Take shortest path from i to some k using $\leq m-1$ edges and traverse edge (k,j)

$$\ell_{ij}^{(m)} = \min\left(\ell_{ij}^{(m-1)}, \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + w_{kj}\right)\right)$$

• Since $w_{ij} = 0$ for all j, simplify to

$$\ell_{ij}^{(m)} = \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)$$

 \bullet If no negative weight cycles, then since all shortest paths have $\leq n-1$ edges.

$$\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = 0 \quad \text{for all } i \in \mathbb{R}$$

Bottum-Up Computation of ${\cal L}$ Matrices

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication Recursive Solution

Bottom-Up Computation Example

Improving Running Time

- \bullet Start with weight matrix W and compute series of matrices $L^{(1)},L^{(2)},\dots,L^{(n-1)}$
- \bullet Core of the algorithm is a routine to compute $L^{(m+1)}$ given $L^{(m)}$ and W
- \bullet Start with $L^{(1)}=W,$ and iteratively compute new L matrices until we get $L^{(n-1)}$
 - Why is $L^{(1)} == W$?
- Can we detect negative-weight cycles with this algorithm? How?

Extend-Shortest-Paths

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication Recursive

Recursive Solution

Computation Example

Example Improving Running Time

```
1 n = \text{number of rows of } L // This is L^{(m)}
 2 create new n \times n matrix L' // This will be L^{(m+1)}
   for i = 1 to n do
           for i = 1 to n do
                 \ell'_{ij} = \infty
                 for k=1 to n do
                       \ell'_{ii} = \min \left( \ell'_{ii}, \ell_{ik} + w_{ki} \right)
                 end
 g
           end
10 end
11 return L'
```

Algorithm 2: Extend-Shortest-Paths(L, W)

Slow-All-Pairs-Shortest-Paths

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Recursive Solution

Bottom-Up Computation

Example

Improving Running Time

Floyd-Warshall Algorithm

```
\mathbf{1} \quad n = \text{number of rows of } W
```

2
$$L^{(1)} = W$$

$$\mathbf{3} \ \ \mathbf{for} \ m=2 \ \mathit{to} \ n-1 \ \mathbf{do}$$

4
$$L^{(m)} = \text{Extend-Shortest-Paths}(L^{(m-1)}, W)$$

5 end

6 return
$$L^{(n-1)}$$

 $\begin{array}{lll} {\sf Algorithm} & {\sf 3:} & {\sf Slow-All-Pairs-Shortest-Paths}(W) \end{array}$

Example

CSCE423/823

Introduction

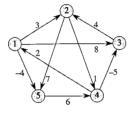
Shortest Paths and Matrix

Multiplication

Recursive Solution Bottom-Un

Computation Example

Improving Running Time



$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & \dot{8} & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Improving Running Time

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication Recursive Solution Bottom-Up Computation Example

Improving Running Time

Floyd-Warshall Algorithm

- What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?
- Can we do better?
- \bullet Note that if, in <code>EXTEND-SHORTEST-PATHS</code>, we change + to multiplication and \min to +, get matrix multiplication of L and W
- \bullet If we let \odot represent this "multiplication" operator, then SLOW-ALL-PAIRS-SHORTEST-PATHS computes

$$L^{(2)} = L^{(1)} \odot W = W^{2},$$

$$L^{(3)} = L^{(2)} \odot W = W^{3},$$

$$\vdots$$

$$L^{(n-1)} = L^{(n-2)} \odot W = W^{n-1}$$

ullet Thus, we get $L^{(n-1)}$ by iteratively "multiplying" W via EXTEND-SHORTEST-PATHS

Improving Running Time (2)

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication Recursive Solution Bottom-Up Computation Example

Improving Running Time

- But we don't need every $L^{(m)}$; we only want $L^{(n-1)}$
- E.g. if we want to compute 7^{64} , we could multiply 7 by itself 64 times, or we could square it 6 times
- In our application, once we have a handle on $L^{((n-1)/2)}$, we can immediately get $L^{(n-1)}$ from one call to EXTEND-SHORTEST-PATHS $(L^{((n-1)/2)},L^{((n-1)/2)})$
- \bullet Of course, we can similarly get $L^{((n-1)/2)}$ from "squaring" $L^{((n-1)/4)},$ and so on
- Starting from the beginning, we initialize $L^{(1)} = W$, then compute $L^{(2)} = L^{(1)} \odot L^{(1)}$, $L^{(4)} = L^{(2)} \odot L^{(2)}$, $L^{(8)} = L^{(4)} \odot L^{(4)}$, and so on
- What happens if n-1 is not a power of 2 and we "overshoot" it?
- How many steps of repeated squaring do we need to make?
- What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication Recursive

Solution Bottom-Up Computation

Computation Example

Running Time

Floyd-Warshall Algorithm

```
\begin{array}{ll} \mathbf{1} & n= \text{ number of rows of } W \\ \mathbf{2} & L^{(1)}=W \\ \mathbf{3} & m=1 \\ \mathbf{4} & \mathbf{while} \ m< n-1 \ \mathbf{do} \\ \mathbf{5} & L^{(2m)}= \text{EXTEND-SHORTEST-PATHS}(L^{(m)},L^{(m)}) \\ \mathbf{6} & m=2m \\ \mathbf{7} & \mathbf{end} \\ \mathbf{8} & \mathbf{return} \ L^{(m)} \end{array}
```

Algorithm 4: Faster-All-Pairs-Shortest-Paths(W)

Floyd-Warshall Algorithm

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path Recursive Solution Bottom-Up Computation Example Transitive

- Shaves the logarithmic factor off of the previous algorithm
- As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
- Considers a different way to decompose shortest paths, based on the notion of an intermediate vertex
 - If simple path $p=\langle v_1,v_2,v_3,\ldots,v_{\ell-1},v_\ell\rangle$, then the set of intermediate vertices is $\{v_2,v_3,\ldots,v_{\ell-1}\}$

Structure of Shortest Path

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path

Recursive Solution Bottom-Up Computation Example Transitive Closure

- Again, let $V = \{1, \dots, n\}$, and fix $i, j \in V$
- ullet For some $1 \leq k \leq n$, consider set of vertices $V_k = \{1, \dots, k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be the minimum-weight path from them
- Is $k \in p$?
 - ① If not, then all intermediate vertices of p are in V_{k-1} , and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 - ② If so, then we can decompose p into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}

Structure of Shortest Path (2)

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

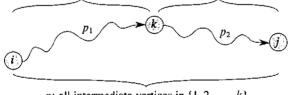
Floyd-Warshall Algorithm

Structure of Shortest Path

Recursive Solution

Bottom-Up Computation

Example Transitive Closure all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$



p: all intermediate vertices in $\{1, 2, \dots, k\}$

Recursive Solution

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm Structure of Shortest Path

Recursive Solution

Bottom-Un Computation Example Transitive Closure

- What does this mean?
- It means that the shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1} , or it is going to go through k
- In the latter case, the shortest path from i to j based on V_k is going to be the shortest path from i to k based on V_{k-1} , followed by the shortest path from k to j based on V_{k-1}
- \bullet Let matrix $D^{(k)} = \left(d_{ij}^{(k)}\right)$, where $d_{ij}^{(k)} =$ weight of a shortest path from i to j based on V_k :

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

• Since all SPs are based on $V_n = V$, we get $d_{ij}^{(n)} = \delta(i,j)$ for all $i, j \in V$

Bottom-Up Computation

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path Recursive Solution

Bottom-Up Computation

Example Transitive

```
\begin{array}{lll} \mathbf{1} & n = \text{number of rows of } W \\ \mathbf{2} & D^{(0)} = W \\ \mathbf{3} & \text{for } k = 1 \text{ to } n \text{ do} \\ \mathbf{4} & \text{for } i = 1 \text{ to } n \text{ do} \\ \mathbf{5} & \text{for } j = 1 \text{ to } n \text{ do} \\ \mathbf{6} & d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \\ \mathbf{7} & \text{end} \\ \mathbf{8} & \text{end} \\ \mathbf{9} & \text{end} \\ \mathbf{10} & \text{return } D^{(n)} \end{array}
```

Algorithm 5: Floyd-Warshall(W)

Floyd-Warshall Example

CSCE423/823

Split into teams, and simulate Floyd-Warshall on this example:

Introduction

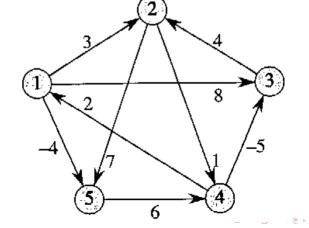
Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path Recursive Solution Bottom-Up

Computation

Transitive Closure



Transitive Closure

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm Structure of Shortest Path Recursive Solution Bottom-Un Computation

Example Transitive

Closure

- Used to determine whether paths exist between pairs of vertices
 - Given directed, unweighted graph G = (V, E) where $V = \{1, \dots, n\}$. the transitive closure of G is $G^* = (V, E^*)$, where

$$E^* = \{(i,j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$$

- How can we directly apply Floyd-Warshall to find E^* ?
- Simpler way: Define matrix T similarly to D:

$$t_{ij}^{(0)} = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \text{ and } (i,j) \not\in E \\ 1 & \text{if } i = j \text{ or } (i,j) \in E \end{array} \right.$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee \left(t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)} \right)$$

• I.e. you can reach j from i using V_k if you can do so using V_{k-1} or if you can reach k from i and reach j from k, both using V_{k-1}

Bottom-Up Computation

CSCE423/823

```
Introduction
```

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path Recursive Solution Bottom-Up Computation Example

Transitive Closure

```
\begin{array}{lll} \mathbf{1} & \text{allocate and initialize } n \times n \text{ matrix } T^{(0)} \\ \mathbf{2} & \text{ for } k=1 \text{ to } n \text{ do} \\ \mathbf{3} & \text{allocate } n \times n \text{ matrix } T^{(k)} \\ \mathbf{4} & \text{ for } i=1 \text{ to } n \text{ do} \\ \mathbf{5} & \text{ for } j=1 \text{ to } n \text{ do} \\ \mathbf{6} & t^{(k)}_{ij} = t^{(k-1)}_{ij} \vee t^{(k-1)}_{ik} \wedge t^{(k-1)}_{kj} \\ \mathbf{7} & \text{ end} \\ \mathbf{8} & \text{ end} \\ \mathbf{9} & \text{ end} \\ \mathbf{10} & \text{ return } T^{(n)} \\ \end{array}
```

Algorithm 6: Transitive-Closure(G)

Example

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm

Structure of Shortest Path Recursive Solution

Bottom-Up Computation Example

Transitive Closure

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Analysis

CSCE423/823

Introduction

Shortest Paths and Matrix Multiplication

Floyd-Warshall Algorithm Structure of Shortest Path Recursive Solution Bottom-Up Computation Example Transitive Closure

- Like Floyd-Warshall, time complexity is officially $\Theta(n^3)$
- However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time
- Also saves space
- ullet Another space saver: Can update the T matrix (and F-W's D matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4)