Nebiaska

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm

1/23

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 06 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

mailto:sscott@cse.unl.edu

Ne‘BﬂvERSWV]or

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm

N
)
w

Introduction

@ Similar to SSSP, but find shortest paths for all pairs of vertices

e Given a weighted, directed graph G = (V, E) with weight function
w: E =R, find §(u,v) forall (u,v) e VxV
@ One solution: Run an algorithm for SSSP |V| times, treating each
vertex in V' as a source
o If no negative weight edges, use Dijkstra’s algorithm, for time
complexity of O(|V |2 + |V||E|) = O(|]V|?) for array implementation,
O(|V||E|log|V]) if heap used
o If negative weight edges, use Bellman-Ford and get O(|V|?|E|) time
algorithm, which is O(|V|*) if graph dense
e Can we do better?
o Matrix multiplication-style algorithm: O(|V[*log|V])
o Floyd-Warshall algorithm: ©(|V|?)
e Both algorithms handle negative weight edges

Nebtaska Adjacency Matrix Representation

Lincoln

CSCE423/823

@ Will use adjacency matrix representation
e @ Assume vertices are numbered: V ={1,2,...,n}
Shortest Paths @ Input to our algorithms will be n x n matrix W:
Multiplica‘/tion
FloydjWarshaII 0 |f Z == j
Aleerithm w;j = { weight of edge (i, j) |f (1,7) €

00 if (i,7) &
@ For now, assume negative weight cycles are absent
@ In addition to distance matrices L and D produced by algorithms,

can also build predecessor matrix 11, where 7;; = predecessor of j on
a shortest path from i to j, or NIL if ¢ = j or no path exists

o Well-defined due to optimal substructure property

WEvered Printing Shortest Paths

Lincoln

CSCE423/823

: 1 if i == j then
Introduction 2 print i
Shortest Path
ang ll\;;tri: ° 3 end
Multiplication 4 else if m;; == NIL then
illoydjverarshall 5 print “no path from " ¢ “to " j " exists”
gorithm
6 end
7 else
8 PRINT-ALL-PAIRS-SHORTEST-PATH(IIL, 4, 77;5)
9 print j
10 end
Algorithm 1: Print-All-Pairs-Shortest-
Path(I1, 4,)

NeBWERSWV] OF

Lincoln

Shortest Paths and Matrix Multiplication

CoCEaz3/823 e Will maintain a series of matrices L(™) = (65;1)) where Egn) = the

minimum weight of any path from 7 to j that uses at most m edges
e Special case: EZ(-?) =0 if ¢ = j, oo otherwise

Introduction

Shortest Paths
and Matrix
Multiplication 2
Recursive

Solution

Bottom-Up
Computation

Example

Improving
Running Time

Floyd-Warshall

Algorithm 1 3

0 1 2 4
553) =, 553) =8, 653) =

Ne‘BﬂvERSWV]or

Lincoln

Recursive Solution

AL @ Can exploit optimal substructure property to get a recursive

definition of E(m)

id

Introduction @ To follow shortest path from 7 to j using at most m edges, either:
Shortest Paths © Take shortest path from i to j using < m — 1 edges and stay put, or
;A"j.t?f,ﬁg;on @ Take shortest path from 7 to some k using < m — 1 edges and traverse
S edge (k. j)
Bottom-Up
Computation E(m) — min <€(m1) min (g(?ﬂ*l) + w)>
xample 117 - 117 l k
mroing g U T i<k<n 7
el @ Since wj; = 0 for all j, simplify to
Algorithm
. ~1)
4™ = min (E(m +w)
i 1<k<n ik kj
@ If no negative weight cycles, then since all shortest paths have
< n — 1 edges,
. pn=1) _ p(n) _ p(n+1)
6/ 0(i,7) —fij —Eij —Eij =

NeBWERSWV] OF

Lincoln

Bottum-Up Computation of L Matrices

CSCE423/823

Introduction

@ Start with weight matrix W and compute series of matrices

Shortest Paths 1 —
and Matrix L(), L(2), ey L(TL 1)
Multiplication))) (m+1) i (m)
Recursive @ Core of the algorithm is a routine to compute L given L™ and
olution
e w
S e Start with L) = W, and iteratively compute new L matrices until
Running Time
: we get L("—1)
Floyd-Warshall
Algorithm ° Why iS L(l) [W?

@ Can we detect negative-weight cycles with this algorithm? How?

WCeveed Eytend-Shortest-Paths

Lincoln

CSCE423/823

1 n = number of rows of L // This is L
Introduction . 3 3
2 create new n x n matrix L' // This will be L™+
Shortest Paths .
and Matrix 3 fori=1 ton do
Multiplication 4 for i = 1 ton do
Recursive ‘7
Solution 5 V.. =0
Bottom-Up 2
Computation 6 for k=1tondo
Example
| i — .
A 7 G = min (6, lik + wiy)
Floyd-Warshall 8 end
Algorith
gorithm 9 end
10 end
11 return L’

Algorithm 2: Extend-Shortest-Paths(L, W)

Weverel S|ow-All-Pairs-Shortest-Paths

CSCE423/823

Introduction

Shortest Paths 1 n = number of rows of W

and Matrix

Multiplication 2 LW =w

Serions 3 form=2ton—1do

s 4 L™ = EXTEND-SHORTEST-PATHS(L(™™Y W)

i;:ﬁlig 5 end

Running Time (n—1)

Floyd-Warshall 6 return L

Algorithm . .
Algorithm 3: Slow-All-Pairs-Shortest-
Paths(17)

Nebiaska Exa mp|e

Lincoln

CSCE423/823

Introduction

Shortest Paths

and Matrix

Multiplication

Recursive

Solution

Bottom-Up

Computation

Example -

Improving 0 3 8§ oo —4 0 3 8 2 -4

Running Time 0 0 co | 7 30 —4 1 7

Floyd-Warshall W= o0 4 0 o o LO={ o 4 0 5 11

Algorithm 2 0o -5 0 oo 2 -1 -5 0 =2
o oo oo 6 0 8 o0 1 6 0
0 3 -3 2 -4 0 1 -3 2 -4
30 -4 1 -1 300 -4 1 -1

=17 4 05 1 W=7 4 05 3

2 -1 -5 0 -2 2 -1 =5 0 =2
8 5 1 6 0 8 5 1.6 0

NeBWERSWV] OF

Lincoln

Improving Running Time

CSCE423/823 . . .
: @ What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?

@ Can we do better?
Introduction

@ Note that if, in EXTEND-SHORTEST-PATHS, we change + to
Shortest Paths

and Matrix multiplication and min to +, get matrix multiplication of L and W
’\:u‘ltplcaton o If we let ® represent this “multiplication” operator, then
Etfptutp SLOW-ALL-PAIRS-SHORTEST-PATHS computes
Example
B L® = Wew = w®
Flayd: Warshal L® = L@eow = W@ ,
gorithm

L(n—l) _ L(n—2)®W — Wn@l

o Thus, we get L("~1 by iteratively “multiplying” W via

s EXTEND-SHORTEST-PATHS

Ne‘BﬂvERSWV]or

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication
Recursive
Solution

Bottom-Up
Computation

Example
Improving
Running Time

Floyd-Warshall
Algorithm

Improving Running Time (2)

@ But we don't need every L(™); we only want L("~1)
o E.g. if we want to compute 7%, we could multiply 7 by itself 64

times, or we could square it 6 times

In our application, once we have a handle on L((”_l)/Q), we can
immediately get L("~1) from one call to
EXTEND-SHORTEST-PaTHs(L(("~1/2) | [(n=1)/2))

Of course, we can similarly get L(("=1/2) from “squaring”
L((”_l)/4), and so on

Starting from the beginning, we initialize L(!) = W, then compute
L(2) e L(l) @ L(l), L(4) e L(2) @ L(Q), L(8) — L(4) @ L(4)' and SO on
What happens if n — 1 is not a power of 2 and we “overshoot” it?

@ How many steps of repeated squaring do we need to make?

What is time complexity of this new algorithm?

Weverle Faster-All-Pairs-Shortest-Paths

CSCE423/823

Introduction 1 n = number of rows of W

Shortest Paths 1) —

and Matrix 2 L() = w

Multiplication 3 m=1

Somon’ 4 while m <n—1 do

e aion 5 L(2m) = EXTEND-SHORTEST-PaTHS(L(™), L(™M))

E,V.ampe 6 m = 2m

Improving _

Running Time 7 end

Floyd-Warshall

Algorithm 8 return L(m)
Algorithm 4: Faster-All-Pairs-Shortest-
Paths(W)

13/23

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm
Structure of
Shortest Path
Recursive
Solution
Bottom-Up
Computation
Example

Transitive
Closure

14 /23

Floyd-Warshall Algorithm

@ Shaves the logarithmic factor off of the previous algorithm

@ As with previous algorithm, start by assuming that there are no
negative weight cycles; can detect negative weight cycles the same
way as before

o Considers a different way to decompose shortest paths, based on the
notion of an intermediate vertex

o If simple path p = (v, va,v3,...,vs—1,v¢), then the set of
intermediate vertices is {va, v3,...,v-1}

Weverlel Strycture of Shortest Path

CSCE423/823

Tradluiar @ Again, let V ={1,...,n}, and fixi,j € V
Shortest Paths H 1 —
Shortest I @ For some 1 < k < n, consider set of vertices V), = {1,...,k}
Multiplicati
e @ Now consider all paths from ¢ to j whose intermediate vertices come
Floyd-Warshall . .
Algorithm from Vi and let p be the minimum-weight path from them
Structure of
Shortest Path ?
Re‘cur_sive ° IS k e p
EZQEZQUP © If not, then all intermediate vertices of p are in Vi_1, and a SP from ¢
o ation to j based on Vj_; is also a SP from 4 to j based on V}
Clonmae @ If so, then we can decompose p into i Lopts 7, where p; and py are

each shortest paths based on V4

15/23

Wect= Structure of Shortest Path (2)

CSCE423/823

Introduction

Shortest Paths all intermediate vertices in §{1,2,...,k — 1} all intermediate vertices in {1,2,...,.k — 1}
and Matrix /I’_/R

Multiplication /”_’—/H

Floyd-Warshall @

Algorithm A Pz @

Structure of

Shortest Path

Recursive o

Solution

Bottom-Up H‘/’a—————/
Computation

Example p: all intermediate vertices in {1,2,...,k}

Transitive
Closure

Wevediad Recyursive Solution

Lincoln

CSCE423/823

@ What does this mean?
@ It means that the shortest path from ¢ to j based on V}, is either

Introduction going to be the same as that based on Vj_1, or it is going to go
Shortest Paths through k
and Matrix
Maltipheation @ In the latter case, the shortest path from ¢ to j based on Vj is going
it e to be the shortest path from i to k£ based on Vj_1, followed by the
orithm .

gthgmcmepof} shortest path from k to j based on Vj_4
Begurive o Let matrix D) = (d()>, where dg-g) = weight of a shortest path
Bottom-U
gjg;f:f:ts’“ from i to j based on V:
Clamre" 0 w;j ey e - ifk=0

= . k—1) (k-1 k-1 .

: min (@, die™V +df V) k=1

e Since all SPs are based on V;, =V, we get dl(;l) = 6(i,4) for all
17/23 1,7€V

Wevevlel Bottom-Up Computation

Lincoln

CSCE423/823

n = number of rows of W
DO —w
for k=1 ton do
for i =1 ton do
for j =1 ton do

k . k—1 k—1 k—1
dy) = min (a0, a1 V)

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm
Structure of
Shortest Path
Recursive
Solution
Bottom-Up
Computation

end
end

Example

Transitive
Closure

O 00 N O O WN =

end
return D(")

Algorithm 5: Floyd-Warshall(17)

-
o

18/23

Weverled Floyd-Warshall Example

CSCE423/823 Split into teams, and simulate Floyd-Warshall on this example:

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm
Structure of
Shortest Path
Recursive
Solution
Bottom-Up
Computation
Example

Transitive
Closure

19/23

Ne‘BﬂvERSWV]or

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall

Algorithm
Structure of
Shortest Path
Recursive
Solution
Bottom-Up
Computation

Example

Transitive
Closure

20/23

Transitive Closure

Used to determine whether paths exist between pairs of vertices
Given directed, unweighted graph G = (V, E)) where V = {1,...,n},
the transitive closure of G is G* = (V, E*), where

E* ={(3,j) : there is a path from i to j in G}

How can we directly apply Floyd-Warshall to find E*?
Simpler way: Define matrix T similarly to D:

RONS 0 ifi#jand (i,j) ¢ E
"1 fi=jor(i,j)EE

(k) _ (k1) |, ((=1) o (k1)
W =t (5 A Y)

l.e. you can reach j from ¢ using Vj if you can do so using Vj,_; or if
you can reach k from i and reach j from k, both using V41

Wevevlel Bottom-Up Computation

Lincoln

CSCE423/823

Introduction allocate and initialize n x n matrix 7(®)

for k =1 ton do
allocate n x n matrix T'(*)
fori =1 ton do
for j =1 ton do
(k) _ 4(k=1) , ((k=1) . (k—1)
) =ty O Vitg Aty

Shortest Paths
and Matrix
Multiplication

Algorithm
Structure of
Shortest Path
Recursive
Solution
Bottom-Up
Computation

end

1
2
3
4

Floyd-Warshall 5
6
7
8 end
9

Example end
Transitive

Closure 10 return T(®)

Algorithm 6: Transitive-Closure(G)

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Shortest Paths
and Matrix
Multiplication

Floyd-Warshall
Algorithm

Structure of

Shortest Path

Recursive
Solution
Bottom-Up
Computation
Example
Transitive
Closure

Example

Lincoln

Nebiaska IV

CSCE423/823

Introduction

o Like Floyd-Warshall, time complexity is officially ©(n?)

Shortest Paths

and Matrix @ However, use of Os and 1s exclusively allows implementations to use
Multiplication P . . .
e bitwise operations to speed things up significantly, processing bits in
oyd-Warsha .

Az batch, a word at a time

Structure of

ofortest Path @ Also saves space

Solution

BottomUp @ Another space saver: Can update the 7" matrix (and F-W's D

e matrix) in place rather than allocating a new matrix for each step
Closure

(Exercise 25.2-4)

23/23

	Introduction
	Shortest Paths and Matrix Multiplication
	Recursive Solution
	Bottom-Up Computation
	Example
	Improving Running Time

	Floyd-Warshall Algorithm
	Structure of Shortest Path
	Recursive Solution
	Bottom-Up Computation
	Example
	Transitive Closure

