Nelsisck

Lincoln

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

and

SR Lecture 06 — All-Pairs Shortest Paths (Chapter 25)
Floyd-Warshall
Algorithm

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

M) Adjacency Matrix Representation

Lincoln

Will use adjacency matrix representation

e o Assume vertices are numbered: V ={1,2,...,n}
Siziis: (Riis @ Input to our algorithms will be n x n matrix W:
:du\m’ph:a;mn
Floyd-Warshall 0 ifi=j
At wi; =4 weight of edge (i,7) if (i,j) € E
] if (i,j) ¢ E
@ For now, assume negative weight cycles are absent
@ In addition to distance matrices L and D produced by algorithms,

can also build predecessor matrix II, where 7;; = predecessor of j on
a shortest path from i to j, or NIL if ¢ = j or no path exists
o Well-defined due to optimal substructure property

Shortest Paths and Matrix Multiplication

Lincoln

o Will maintain a series of matrices L™ = f,(»;n) , where Zgn) = the
minimum weight of any path from i to j that uses at most m edges

Introduction . 0 o . . .
o Special case: [5.) =0 if i = j, oo otherwise
Shortest Paths J
and Matrix
Multiplication 2

Recursive
Solution

Algorithm

03 = oo, i) =8 47 =7

Nelsisdk

Lincoln

CSCE423/823

Introduction

Warshall
thm

Lincoln

CSCE423/823

Introduction
Shortest Paths

and Matrix

rsha
Algorithm

Lincoln

Imj
Running Time

Floyd-Warshall
Algorithm

Introduction

@ Similar to SSSP, but find shortest paths for all pairs of vertices

o Given a weighted, directed graph G = (V, E) with weight function
w: E — R, find §(u,v) for all (u,v) eV xV
@ One solution: Run an algorithm for SSSP |V| times, treating each
vertex in V' as a source
o If no negative weight edges, use Dijkstra’s algorithm, for time
complexity of O(|V|> + [V||E|) = O(|V|?) for array implementation,
O(|V||E|log |V]) if heap used
If negative weight edges, use Bellman-Ford and get O(|V|?|E|) time
algorithm, which is O(|V|*) if graph dense
o Can we do better?
Matrix multiplication-style algorithm: O(|V|*log [V])
Floyd-Warshall algorithm: ©(|V[?)
Both algorithms handle negative weight edges

Printing Shortest Paths

1 if i == j then

2 print ¢

3 end

4 else if 7;; == NIL then

5 print “no path from " i “to " j “ exists”

6 end

7 else

8 PRINT-ALL-PAIRS-SHORTEST-PATH(IL, %, i)
9 print j

10 end

Algorithm 1: Print-All-Pairs-Shortest-

Path(IL, i, §)

Recursive Solution

o Can exploit optimal substructure property to get a recursive
definition of ¢
@ To follow shortest path from i to j using at most m edges, either:
@ Take shortest path from i to j using < m — 1 edges and stay put, or
@ Take shortest path from i to some k using < m — 1 edges and traverse
edge (%, j)

(m) _ (m-1) . (m—1))
¢ = min <éij in (Zlk + wkj)>
@ Since wy; = 0 for all j, simplify to
(m) _ s (m-1)
47 = iz, (60)
@ If no negative weight cycles, then since all shortest paths have
<n —1 edges,

80 g) =00 =) =) =

Nelsisck

Lincoln

Introduction
Shortest Paths

and Matrix
Multiplication

om-Up
Computation

Nebiaska

Lincoln

Introduction

omputation

Lincoln

Introduction

Shortest Paths
and Matrix

Exampl
Improving
Running Time
Floyd-Warshall
Algorithm

Bottum-Up Computation of L Matrices

o Start with weight matrix W and compute series of matrices
LW L@ . ph-

o Core of the algorithm is a routine to compute L™*1) given L(™ and
w

o Start with L(Y) = W, and iteratively compute new L matrices until
we get Ln=1)

o Whyis L) == W?
@ Can we detect negative-weight cycles with this algorithm? How?

Slow-All-Pairs-Shortest-Paths

1 n = number of rows of W

2 LW =w

3 form=2ton—1do

4 L™ = EXTEND-SHORTEST-PaTHS (L1 W)

5 end

6 return L("~Y
Algorithm 3: Slow-All-Pairs-Shortest-
Paths(17)

Improving Running Time

@ What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?

@ Can we do better?

@ Note that if, in EXTEND-SHORTEST-PATHS, we change + to
multiplication and min to +, get matrix multiplication of L and W

o If we let ® represent this “multiplication” operator, then
SLOW-ALL-PAIRS-SHORTEST-PATHS computes

Weow = w®
IL® = L@eow = W®,

~
c
Il

L) — L<"‘2l>®W = wnO1

o Thus, we get L("1) by iteratively “multiplying” W via
EXTEND-SHORTEST-PATHS

WEvet=Y Extend-Shortest-Paths

Lincoln

// This is L™
create new n x n matrix L' // This will be L(™+1)
for i =1 ton do

for j =1 ton do

1 n = number of rows of L
2
3
4
5 0 =00
6
7
8
9

Introduction

Shortest Paths
ix

ij
for k=1 ton do
li} = min (Z;],llk + wk])

ot
end
end
10 end
11 return L'

Algorithm 2: Extend-Shortest-Paths(L, W)

Example

Lincoln

CSCE423/823

Introduction

Shortest Paths
d M

>
mproving 0 3 8 co —4 0 3 8 2 -4
co 0 oo 1 7 3 0 -4 1 7

Warsha W= 00 4 0 00 LP={co 4 05 1l
Algorithm 2 0 -5 0 o 2 -1 -5 0 -2
0 0 o 6 0 8 o0 1 6 0

0 3 -3 2 -4 0 1 -3 2 -4

30 —4 1 -1 30 —4 1 -1

@=7 4 05 1 LW={7 4 05 3

2 -1 -5 0 -2 2 -1 -5 0 -2

8 5 1.6 0 8 5 16 0

Improving Running Time (2)

Lincoln

o But we don't need every L(™); we only want L("~1)

e E.g. if we want to compute 7%%, we could multiply 7 by itself 64
redictby times, or we could square it 6 times
s @ In our application, once we have a handle on L((»~1/2) we can
immediately get L1 from one call to
EXTEND-SHORTEST-PaTHS(L{(*=1/2) | [(n=1)/2))
i o Of course, we can similarly get L(*~1)/2) from “squaring”

Running Time L((nfl)/él)y and so on
Floyd-Warshall
Algerithm o Starting from the beginning, we initialize L(!) = W, then compute

LA =LMoo L®, LW =L@ o L®), L®) = LW © LW, and so on
o What happens if n — 1 is not a power of 2 and we “overshoot” it?
@ How many steps of repeated squaring do we need to make?
@ What is time complexity of this new algorithm?

Nelsisck

Lincoln

Introduction
Shortest Paths
and Matrix

Multiplication

Improving
Running Time

Floyd-Warshall
Algorithm

Nebiaska

Lincoln

Introduction

Shortest Paths
and Matrix
Multiplication

Structure of
ortest Path

Example
Transitive
Closure

Lincoln

Introduction

Shortest Paths
and Mat
Multiplic

Floyd-Warshall

Faster-All-Pairs-Shortest-Paths

1 n = number of rows of W

2 LW =w

3 m=1

4 while m <n—1do

5 L(™) = EXTEND-SHORTEST-PATHS(L(™) | L(M))

6 m=2m

7 end

8 return L(™)
Algorithm 4: Faster-All-Pairs-Shortest-
Paths(WW)

Structure of Shortest Path

o Again, let V. ={1,...,n}, and fix i,j € V
o For some 1 < k < n, consider set of vertices V}, = {1,...,k}

@ Now consider all paths from i to j whose intermediate vertices come
from Vj, and let p be the minimum-weight path from them
o lskep?
@ If not, then all intermediate vertices of p are in Vi_1, and a SP from 4
to j based on Vj._ is also a SP from i to j based on Vj
@ |If so, then we can decompose p into i 25 k £3 j, where p; and p, are
each shortest paths based on Vj,_;

Recursive Solution

@ What does this mean?

@ It means that the shortest path from i to j based on V is either
going to be the same as that based on Vj_1, or it is going to go
through &

In the latter case, the shortest path from i to j based on Vj is going
to be the shortest path from i to k based on V},_, followed by the
shortest path from k to j based on Vj_;

Let matrix D*) = (d(k)), where dg-c) = weight of a shortest path

° i
from i to j based on Vj:
; ifk=0
w | wi 4 ‘ i
45 =\ min (b, d +dl) k=1

o Since all SPs are based on V,, =V, we get dl(;) = (i, j) for all
iwjev

WN2etled Floyd-Warshall Algorithm

Lincoln

Introductior
f'h" lr "h @ Shaves the logarithmic factor off of the previous algorithm
Shortest Paths

T, @ As with previous algorithm, start by assuming that there are no

Floyd-Warshall negative weight cycles; can detect negative weight cycles the same

Aleorithm way as before

o Considers a different way to decompose shortest paths, based on the
notion of an intermediate vertex

E o If simple path p = (vy,v2,v3,...,0,—1,0¢), then the set of

Gonore intermediate vertices is {v2, vs, ..., ve—1}

Structure of Shortest Path (2)

Lincoln

Introduction
Shortest Paths all intermediate vertices in {1,2,...,k — 1} all intermediate vertices in {1,2,...,k — 1}
and Matrix

Multiplication

Floyd-Warshall n @ P

Algorithm

Shortest Path e

p: all intermediate vertices in {1,2,...,k}

M Bottom-Up Computation

Lincoln

Introduction 1 n = number of rows of W
Shortest Paths 2 DO =w
o e 3 for k=1 ton do
Multiplication
) 4 fori=1ton do
Floyd-Warshal 5 for j =1 ton do
i) _ in (@1 gt=1 4 4=
6 dly) = min (afy™, a0 +d7Y)
7 end
o 8 end
9 end
10 return D™

Algorithm 5: Floyd-Warshall(W)

Nebiaska Floyd-Warshall Example

Lincoln

Split into teams, and simulate Floyd-Warshall on this example:

Introduction
Shortest Paths
and Matrix

Multiplication

Floyd-Warshall

M) Bottom-Up Computation

Lincoln

Introduction 1 allocate and initialize n x n matrix 7(%)
Shortest Paths 2 for k=1 ton do
and Matrix 3 allocate n x n matrix T(*)
Multiplication X
4 fori =1 ton do
5 for j =1 ton do
(k) _ y(k=1) \, 4 (k=1) \ ,(k=1)
6 ty) =ty Vg At
7 end
: 8 end
Example 9 end
Transitive
== 10 return 7(")

Algorithm 6: Transitive-Closure(G)

Nebiaska INIEIVEE

Lincoln

Intreduction o Like Floyd-Warshall, time complexity is officially ©(n?)

Shortest Paths . . .

and Matrie @ However, use of 0s and 1s exclusively allows implementations to use
Multiplic: e . . .
“ :W - bitwise operations to speed things up significantly, processing bits in
Algorithm batch, a word at a time

@ Also saves space

o Another space saver: Can update the 7" matrix (and F-W's D
matrix) in place rather than allocating a new matrix for each step
(Exercise 25.2-4)

Nebiaska Transitive Closure

Lincoln

@ Used to determine whether paths exist between pairs of vertices

o Given directed, unweighted graph G = (V, E) where V = {1,...,n},
Introduction the transitive closure of G is G* = (V, E*), where

Shortest Paths

PR E* = {(i,7) : there is a path from i to j in G}

Floyd-Warshall
Algorithm

@ How can we directly apply Floyd-Warshall to find E*?7
@ Simpler way: Define matrix 1" similarly to D:

FONS 0 ifi#jand (i,j) ¢ E
o1 ifi=jor(i,j)EE

Transitive
Closure

k k—1 k—1 k-1
) =tV (l 0 A Y)

o l.e. you can reach j from i using V}, if you can do so using V},_1 or if
you can reach k from i and reach j from k, both using V},_

Example

Lincoln

Introduction

Shortest Paths
and Matrix
Multiplication

