Nelsisck

Lincoln

CSCEA4
Computer Science & Engineering 423/8
o Design and Analysis of Algorithms
Bellman-Ford
hm
555Ps in Lecture 05 — Single-Source Shortest Paths (Chapter 24)
ed
raphs
i
Stephen Scott
G (Adapted from Vinodchandran N. Variyam)
Paths
Spring 2010
1/36

W=etled Types of Shortest Path Problems

Lincoln

Given G as described earlier,

Introduction o Single-Source Shortest Paths: Find shortest paths from source
: node s to every other node

o Single-Destination Shortest Paths: Find shortest paths from every
node to destination ¢

i‘i"mn*md o Can solve with SSSP solution. How?

5SSPs in o Single-Pair Shortest Path: Find shortest path from specific node u
e e to specific node v

o Can solve via SSSP; no asymptotically faster algorithm known
@ All-Pairs Shortest Paths: Find shortest paths between every pair of
Constrants nodes

and Shortest

Pathe o Can solve via repeated application of SSSP, but can do better

2eEeY Negative-Weight Edges (1)

@ What happens if the graph G has edges with negative weights?

Bellman-Ford o Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
At right circumstances (which circumstances?)

Neveel |ntroduction

Lincoln

CSCE423/823

o Given a weighted, directed graph G = (V, E)) with weight function

w:FE—-R
Introduction @ The weight of path p = (vg,v1,...,v) is the sum of the weights of
its edges:
k
w(p) =Y wlvi-1,v)
i=1

@ Then the shortest-path weight from u to v is

§(u,v) = min{w(p) : u %> v} if there is a path from u to v
N o0 otherwise

DHF o A shortest path from u to v is any path p with weight

Constraints

.;r;(:ihmteat w(p) = (5('[1,, U)
o Applications: Network routing, driving directions

Optimal Substructure of a Shortest Path

Lincoln

CSCE423/823

e @ The shortest paths problem has the optimal substructure property:
Sl b If p= (vo,v1,...,vk) is a SP from vy to v, then for 0 <i < j <k,
Weig pij = <U,j,'l),;+1, . ,’UJ') is a SP from v; to v
Proof: Let p =y 2% 2y v el vk with weight
ﬁfg"ﬁ':‘ii;:;TD"’ w(p). = w(po;) + w(pij) + w(pjk?. If there exi§ts a path p}; from v; to
v; with w(py;) < w(pij), then p is not a SP since

,
poi Pi Pik .
Vg 5 v; ~ v; % vy has less weight than p

A @ This property helps us to use a greedy algorithm for this problem
Difference

Constraints

and Shortest

Paths

4/36

Negative-Weight Edges (2)

Lincoln

tion

Bellman-Ford

Dijkstra’s
Algorithm

Nebiaska @SS

Lincoln

Introduction

Optimal
Sul

@ What kinds of cycles might appear in a shortest path?
o Negative-weight cycle
Bellman-Ford o Zero-weight cycle
Algorithm - .
§ o Positive-weight cycle

Directed
Acyclic Graphs

Dijkstra's
Algorithm

Difference
Constraints
and Shortest
Paths

WCelel Relaxation (2)

Lincoln

Introduction
1 for each vertexv € V do
2 d[v] = 0

Al 3 m[v] = NIL

Bellman-Ford

Algorithm 4 end

SSSPs in 5 d[.s] =0

Directed

Acyclic Graphs. . e g .
) “ Algorithm 1: Initialize-Single-Source(G, s)
ijkstra's
Algorithm

Constraints How is the invariant maintained?
and Shortest
Paths

Relaxation Example

Lincoln

Introduction
Optimal

| RELAX(u,v,w)

Relaxation

Bellman-Ford
Algorithm u

i v
SSSPs in
Directed

Acyclic Graphs
(b)

Dijkstra's

Algorithm

Difference
Constraints.
and Shortest
>aths

WcERY Relaxation (1)

Lincoln

Introduction

@ Given weighted graph G = (V, E) with source node s € V and other
node v € V (v # s), we'll maintain d[v], which is upper bound on
o(s,v)
o Relaxation of an edge (u,v) is the process of testing whether we
can decrease d[v], yielding a tighter upper bound
Dijkstra's
Algorithm

Difference
Constraints
and Shortest
Paths

s Relaxation (3)

1 if dv] > d[u] + w(u,v) then
2 d[v] = d[u] + w(u,v)
Bellman-Ford 3 ﬂ-[v] =u
A 4 end

Algorithm 2: Relax(u, v, w)

Dijkstra’s
Algorithm

How do we know that we can tighten d[v] like this?

and Shortest
Paths

10/36

Weeet=Y Bellman-Ford Algorithm

Lincoln

Introduction

Bellman-Ford .
Algorithm o Greedy algorithm

Introduction

e o Works with negative-weight edges and detects if there is a
Analyis negative-weight cycle

SSSPs in

Pl o @ Makes |V| — 1 passes over all edges, relaxing each edge during each
Dijkstra's pass

Algorithm

Difference
Constrai

and Shortest
Paths

WEeet=Y Pseudocode for Bellman-Ford Algorithm WLeeted Bellman-Ford Algorithm Example (1)

Lincoln Lincoln

CSCE423/823

1 INITIALIZE-SINGLE-SOURCE(G), s)
Introduction 2 fori=1to|V|—1do Introduction
Sl 3 for each edge (u,v) € E do (E vzl

4 RELAX (u, v, w) Ale

5 end

6 end Analysis

7 for each edge (u,v) € E do oepein

8 if d[v] > d[u] + w(u,v) then Acyclic
Dijkstra’s 9 return FALSE // G has a negative-wt cycle L . .
Algorithm 10 end Within each pass, edges relaxed in this order:
Dl 11 end Plicclll (1), (,y), (8, 2), (2,1), (y,7), (4, 2), (2,2), (2,9), (5, 1), (5,9)
;’;‘:éhomgl 12 return TRUE // G has no neg-wt cycle reachable frm s ,T;fhzhmm(

Algorithm 3: Bellman-Ford(G, w, s)

Weeet=Y Bellman-Ford Algorithm Example (2) Nebiaska [l pfoits Complexity of Bellman-Ford Algorithm

CSCE423/823

Introduction Introduction

povdisriniad Al o INITIALIZE-SINGLE-SOURCE takes how much time?
T o RELAX takes how much time?
e What is time complexity of relaxation steps (nested loops)?
Drace Directed o What is time complexity of steps to check for negative-weight cycles?

Acyclic Graphs Acyclic Graphs

o What is total time complexity?

Dijkstra's
Algorithm
Within each pass, edges relaxed in this order: B
Gl (1.0). (1.9). (1.2). (5,0) (3. 2), (4:2). (2,2): (2,5). (s.1), (5.9) G
16 /36

Correctness of Bellman-Ford Algorithm (2)

Correctness of Bellman-Ford Algorithm

Lincoln

Lincoln

o Let ¢ = (vg,v1,...,v; = vg) be neg-weight cycle reachable from s:

@ Assume no negative-weight cycles k
Iniroduction @ Since no cycles appear in SPs, every SP has at most |V| — 1 edges Introduction w(vi-1,v;) <0
Bellman-Ford Bellman-Ford i=1
Algorithm @ Then define sets Sy, S1,...Sy_1: R . X
e, 0 Vi=t o If algorithm incorrectly returns TRUE, then (due to Line 8) for all
Eanpe” nodes in the cycle (i = 1,2,...,k
Anaivsis Sp={veV:3sHust 8(s,v) =w(p) and [p| < k} n ycle (i 2500 K),
Dreced _— R , . v d[vi] < d[vi-a] + w(vi-1, v)
Acyclic Graphs o Loop invariant: After ith iteration of outer relaxation loop (Line 2), Acyclic Graphs .
Difstra's for all v € Sj, we have d[v] = §(s,v) ‘ o By summing, we get
Algorithm L. . k k k

e Can prove via induction

Difference . . . [_)l”en:n('e d Vi < d Vi w(v;— v,
onsainio o Implies that, after |V| — 1 iterations, d[v] = (s, v) for all Gmeas 2}: [vi] < z]: [oi1] + 21: (vi-1, i)
and Shortes and Shortes iz P iz

Paths veV = S\V\—l Paths . R
@ Since vy = vy, Yy d[vi] = iy d[vi—1]
@ This implies that 0 < Zle w(vi—1,v;), a contradiction

WEect= SSSPs in Directed Acyclic Graphs WEeet=Y Pseudocode for SSSP in dags

Lincoln Lincoln

o Why did Bellman-Ford have to run |V| — 1 iterations of edge
relaxations?
Introduction @ To confirm that SP information fully propagated to all nodes Itroduction 1 topologically sort the vertices of G

posiabie prsiabes 2 INITIALIZE-SINGLE-SOURCE(G, 5)

3 for each vertex u € V, taken in topo sorted

order do
4 for eachv € Adj[u] do
s 5 RELAX(u, v, w)
E‘)\\igxyr‘\:::v 6 end
Difference . . Difference 7 end
Gamiais @ What if we knew that, after we relaxed an edge just once, we would @erhin
Paths be completely done with it? Paths Algorithm 4: Dag—Shortest»Paths(G, w, S)
o Can do this if G a dag and we relax edges in correct order (what
order?)

WcERY SSSP dag Example (1) WcERY SSSP dag Example (2)

Lincoln

Introduction Introduction

Bellman-Ford
Algorithm

Bellman-Ford
Algorithm

SSSPs in SSSPs in
Directed Directed
Acyclic Graphs

Dijkstra's
Algorithm

Difference
Constraints
and Shortest
Paths

Difference
Constraints
and Shortest
Paths

Time Complexity of SSSP in dag WNEeEle] Dijkstra’s Algorithm

Lincoln

Introduction Introduction

Bellman-Ford Bellman-Ford o Faster than Bellman-Ford

Algorithm T logical kes h h time? Algorithm) . .
@ lopological sort takes how much time’ sespe o Requires all edge weights to be nonnegative
@ INITIALIZE-SINGLE-SOURCE takes how much time? .El'fjffdcmphs o Maintains set S of vertices whose final shortest path weights from s
o How many calls to RELAX? Dijkstra's have been determined

e . . . (i, o Repeatedly select u € V' \ S with minimum SP estimate, add u to .S,

Anslyss o What is total time complexity? Introduction P Y ! \

it The Algorithm and relax all edges leaving u

ijkstra's Ex

A At o Uses min-priority queue

Difference
Constrai
and Shortest

Difference
Constraints
and Shortest

Paths Paths

WEeet=Y Pseudocode for Dijkstra’s Algorithm WLeete Dijkstra’s Algorithm Example (1)

Lincoln Lincoln

1 INITIALIZE-SINGLE-SOURCE(G, $)
Introduction 2 8=0 Introduction
Bellman-Ford Bellman-Ford
Algorithm 3 Q =V Algorithm

4 while Q # () do

5 u = EXTRACT-MIN(Q)

6 S=SU{u}

7 for each v € Adj[u] do g

i

8 RELAX (u, v, w) Analysis

9 end o
and Shortest and Shortest
Paths 10 end Paths

Algorithm 5: Dijkstra(G, w, s)

Nebaska Dijkstra's Algorithm Example (2) Nebiaska [l pfoits Complexity of Dijkstra’s Algorithm

@ Using array to implement priority queue,
INITIALIZE-SINGLE-SOURCE takes how much time?

Introduction Introduction

°
Z‘gmﬂ;‘fmd 2 " . s Efg”c',',‘,f:;fmd o What is time complexity to create Q?
SSSPs in sSSP e How many calls to EXTRACT-MIN?
Directed Directed o What is time complexity of EXTRACT-MIN?
Acyclic Graphs Acyclic Graphs
i bl o How many calls to RELAX?
ijkstra's 3 . ijkstra’s . .
Algorithm 5 - 7 8 . Algorithm o What is time complexity of RELAX?
o What is total time complexity?
Exmale . . .
ik @ Using heap to implement priority queue, what are the answers to the

Difference above questions?
Constraints
and Shortest

. @ When might you choose one queue implementation over another?

Constraints
and Shortest
Paths

Correctness of Dijkstra’s Algorithm WNEeEleY | inear Programming

Lincoln Lincoln

o Given an m X n matrix A and a size-m vector b and a size-n vector
¢, find a vector of n elements that maximizes Z;Z:l c;x; subject to

Introduction 'f’tm““‘“" Az <b
Bellman-Ford Bellman-Ford
Algorithm @ Invariant: At the start of each iteration of the while loop, Algorithm 1 1 22
s dlv] = §(s,v) forallve S S eEgc=[2 3], A=| 1 =2, b= 4 | implies:
o Prove by contradiction (p. 660) Acyclic Graphs 1 0 -8
@ Since all vertices eventually end up in S, get correctness of the Ao maximize 2z1 — 3z2 subject to
algorithm
Constraints 1 +x9 < 22

Analysis and Shortest
Difference T — 2z <
Constraints rogramming.
and Shortest T >

Paths

@ Solution: 1 =16, 9 =6

Nelsisck

Lincoln

Introduction

Bellman-Ford

Nebiaska

Lincoln

Introduction

Bellman-Ford
Algorithm

Acyclic Graphs

Dijkstra's
Algorithm

Difference
Constraints and

Fea:

Lincoln

Introduction

Bellman-Ford
Algorithm

clic Graphs

Dijkstra’s
Algorithm
Difference
Constraints
and Shortest

Constraint
Graphs

Difference Constraints and Feasibility

o Decision version of this problem: No objective function to
maximize; simply want to know if there exists a feasible solution,
i.e. an z that satisfies Az < b

@ Special case is when each row of A has exactly one 1 and one —1,
resulting in a set of difference constraints of the form

z;—x; < b

o Applications: Any application in which a certain amount of time
must pass between events (x variables represent times of events)

Difference Constraints and Feasibility (3)

Is there a setting for x1, ..., x5 satisfying:

Tl — T2 S 0
ry—x; < -—1
Ty — T S 1
Ir3 — X1 S 5
Tr4 — I S 4
Ty — T3 S —1
5 —x3 < —3
T5 — T4 S -3

One solution: = = (—5,-3,0,—1,—4)

Constraint Graph Example

Nelsisdk

Lincoln

Introduction

Bellman-Ford
gorithm

Dijkstra’s
Algorithm

Constraints and
Feasibility

Lincoln

CSCE423/823

Introduction

Bellman-Ford
Algorithm

SSSPs in
Directed
Acyclic Graphs

Dijkstra’s
Algorithm

Lincoln

Introduction

Bellman-Ford
Algorithm

Dijkstra’s
Alg

g ts
and Shortest
Paths

Solving
Feasibility with
Beilman Ford

Difference Constraints and Feasibility (2)

1 -1 0 0 0 0
1 0 0 0 -1 -1
0 1 0 0 -1 1
10 1 0 0 5
A=l 4 g o 1 o | ™=y
0 0 -1 1 o0 -1
0 0 -1 0 1 -3
0 0 0 -1 1 -3

Constraint Graphs

@ Can represent instances of this problem in a constraint graph
G=(V,E)

@ Define a vertex for each variable, plus one more: If variables are
1, Ty, get V = {vo,v1,...,0n}

o Add a directed edge for each constraint, plus an edge from vy to
each other vertex:

E = {(vi,vj):xj —x; < by is a constraint}
U{(vo, v1), (vo, v2), - - -, (V0. vn) }

o Weight of edge (v, v;) is by, weight of (vo,v¢) is 0 for all £ # 0

Solving Feasibility with Bellman-Ford

@ Theorem: Let GG be the constraint graph for a system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution to the system. If G has no negative-weight cycle,
then a feasible solution is

z = [8(vo,v1),6(vo, v2), . .., 6(vo, vy)]

o For any edge (v;,v;) € E, 6(vo,v;) < d(vo, vi) + w(vi,v;) =
(00, v5) — Ot 1) < w(risy)

o If there is a negative-weight cycle ¢ = (v;,v;+1,...,v;), then there is
a system of inequalities z;11 — z; < w(v;, viy1),
Tivo — Tit1 < W(Vig1,Vig2), - Tp — Tpo1 < W(VE—_1,vk). Summing

both sides gives 0 < w(c) < 0, implying that a negative-weight cycle
indicates no solution
o Can solve this with Bellman-Ford in time O(n? + nm)

