

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 04 — Minimum-Weight Spanning Trees (Chapter 23)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Kruskal's Algorithm

- ullet Given a connected, undirected graph G=(V,E), a **spanning tree** is an acyclic subset $T\subseteq E$ that connects all vertices in V
 - T acyclic \Rightarrow a tree
 - T connects all vertices \Rightarrow spans G
- If G is weighted, then T's weight is $w(T) = \sum_{(u,v) \in T} w(u,v)$
- A minimum weight spanning tree (or minimum spanning tree, or MST) is a spanning tree of minimum weight
 - Not necessarily unique
- Applications: anything where one needs to connect all nodes with minimum cost, e.g. wires on a circuit board or fiber cable in a network

MST Example

CSCE423/823

Introduction

Kruskal's Algorithm

Kruskal's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm

Introduction
The Algorithm
Example
Disjoint-Set
Data Structure
Analysis

- Greedy algorithm: Make the locally best choice at each step
- Starts by declaring each vertex to be its own tree (so all nodes together make a forest)
- Iteratively identify the minimum-weight edge (u,v) that connects two distinct trees, and add it to the MST T, merging u's tree with v's tree

Pseudocode for Kruskal's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm

Introduction
The Algorithm

Example

Disjoint-Set Data Structure Analysis

Prim's Algorithm

```
1 A = \emptyset
   for each vertex v \in V do
         Make-Set(v)
   end
   sort edges in E into nondecreasing order by weight w
 6 for each edge (u,v) \in E, taken in nondecreasing order
    do
         if FIND-Set(u) \neq FIND-Set(v) then
              A = A \cup \{(u, v)\}
               U_{NION}(u, v)
10
         end
11
   end
12 return A
```

Algorithm 1: $\mathsf{MST} ext{-}\mathsf{Kruskal}(G,w)$

Pseudocode for Kruskal's Algorithm (2)

CSCE423/823

Introduction

Kruskal's Algorithm Introduction

The Algorithm

Example
Disjoint-Set
Data Structure
Analysis

- \bullet ${\tt FIND\text{-}Set}(u)$ returns a representative element from the set (tree) that contains u
- ullet Union(u,v) combines u's tree to v's tree
- These functions are based on the disjoint-set data structure
- More on this later

Example (1)

CSCE423/823

Introduction

Kruskal's Algorithm

Introduction The Algorithm

Example

Disjoint-Set Data Structure

Analysis Prim's Algorithm

Example (2)

CSCE423/823

Introduction

Kruskal's Algorithm

The Algorithm

Example

Disjoint-Set Data Structure

Analysis

Example (3)

CSCE423/823

Introduction

Kruskal's Algorithm

The Algorithm

Example

Disjoint-Set Data Structure Analysis

Disjoint-Set Data Structure

CSCE423/823

Introduction

Kruskal's Algorithm Introduction The Algorithm Example

Disjoint-Set Data Structure Analysis

- Given a **universe** $U = \{x_1, \dots, x_n\}$ of elements (e.g. the vertices in a graph G), a DSDS maintains a collection $\mathcal{S} = \{S_1, \dots, S_k\}$ of disjoint sets of elements such that
 - ullet Each element x_i is in exactly one set S_j
 - No set S_j is empty
- Membership in sets is dynamic (changes as program progresses)
- Each set $S \in \mathcal{S}$ has a **representative element** $x \in S$
- Chapter 21

Disjoint-Set Data Structure (2)

CSCE423/823

Introduction

Kruskal's Algorithm Introduction The Algorithm Example

Data Structure
Analysis

- DSDS implementations support the following functions:
 - Make-Set(x) takes element x and creates new set $\{x\}$; returns pointer to x as set's representative
 - UNION(x,y) takes x's set (S_x) and y's set (S_y) , assumed disjoint from S_x), merges them, destroys S_x and S_y , and returns representative for new set from $S_x \cup S_y$
 - \bullet FIND-SET(x) returns a pointer to the representative of the unique set that contains x
- Section 21.3: can perform d D-S operations on e elements in time $O(d \alpha(e))$, where $\alpha(e) = o(\lg^* e) = o(\log e)$ is *very* slowly growing:

$$\alpha(e) = \begin{cases} 0 & \text{if } 0 \le e \le 2\\ 1 & \text{if } e = 3\\ 2 & \text{if } 4 \le e \le 7\\ 3 & \text{if } 8 \le e \le 2047\\ 4 & \text{if } 2048 \le e \le 16^{512} \end{cases}$$

Analysis of Kruskal's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm Introduction The Algorithm Example Disjoint-Set Data Structure

Analysis

- Sorting edges takes time $O(|E| \log |E|)$
- Number of disjoint-set operations is O(|V|+|E|) on O(|V|) elements, which can be done in time $O((|V|+|E|)\,\alpha(|V|))=O(|E|\,\alpha(|V|))$ since $|E|\geq |V|-1$
- Since $\alpha(|V|) = o(\log |V|) = O(\log |E|)$, we get total time of $O(|E|\log |E|) = O(|E|\log |V|)$ since $\log |E| = O(\log |V|)$

Prim's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm

Introduction
The Algorithm
Example
Analysis

• Greedy algorithm, like Kruskal's

- In contrast to Kruskal's, Prim's algorithm maintains a single tree rather than a forest
- ullet Starts with an arbitrary tree root r
- Repeatedly finds a minimum-weight edge that is incident to a node not yet in tree

Pseudocode for Prim's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm

Introduction

The Algorithm

Example Analysis

```
A = \emptyset
     for each vertex v \in V do
             key[v] = \infty
             \pi[v] = NIL
     end
     key[r] = 0
     Q = V
     while Q \neq \emptyset do
              u = \text{Extract-Min}(Q)
10
11
12
             for each v \in Adi[u] do
                     if v \in Q and w(u, v) < key[v] then
                              \pi[v] = u
13
                             key[v] = w(u, v)
14
                     end
15
             end
16
     end
```

Algorithm 2: MST-Prim(G, w, r)

Pseudocode for Prim's Algorithm (2)

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm Introduction

Introduction
The Algorithm
Example
Analysis

ullet key[v] is the weight of the minimum weight edge from v to any node already in MST

- EXTRACT-MIN uses a **minimum heap** (minimum priority queue) data structure
 - \bullet Binary tree where the key at each node is \leq keys of its children
 - Thus minimum value always at top
 - Any subtree is also a heap
 - Height of tree is $\lfloor \lg n \rfloor$
 - Can build heap on n elements in O(n) time
 - After returning the minimum, can filter new minimum to top in time $O(\log n)$
 - Based on Chapter 6

Example (1)

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm Introduction

The Algorithm

Example Analysis

Example (2)

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm Introduction

The Algorithm

Analysis

Analysis of Prim's Algorithm

CSCE423/823

Introduction

Kruskal's Algorithm

Prim's Algorithm Introduction The Algorithm Example Analysis • **Invariant:** Prior to each iteration of the while loop:

- $\textbf{ 0} \ \, \mathsf{Nodes \ already \ in \ MST \ are \ exactly \ those \ in \ } V \setminus Q$
- ② For all vertices $v \in Q$, if $\pi[v] \neq \text{NIL}$, then $key[v] < \infty$ and key[v] is the weight of the lightest edge that connects v to a node already in the tree
- Time complexity:
 - $\bullet \ \ {\rm Building \ heap \ takes \ time} \ O(|V|) \\$
 - ullet Make |V| calls to <code>EXTRACT-MIN</code>, each taking time $O(\log |V|)$
 - For loop iterates O(|E|) times
 - ullet In for loop, need constant time to check for queue membership and $O(\log |V|)$ time for decreasing v's key and updating heap
 - Yields total time of $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$
 - ullet Can decrease total time to $O(|E| + |V| \log |V|)$ using Fibonacci heaps