Nelsisck

Lincoln

CSCE4: 3
Computer Science & Engineering 423/823
pseducten Design and Analysis of Algorithms
Kruskal
Al m
P Lecture 04 — Minimum-Weight Spanning Trees (Chapter 23)
Algorithm
Stephen Scott
(Adapted from Vinodchandran N. Variyam)
Spring 2010
1/18

EEY VST Example

Lincoln

Introduction

Kruskal's
Algorithm

Prim's
Algorithm

Pseudocode for Kruskal's Algorithm

Lincoln

1 4=90
Tt 2 for each vertexv € V do
R 3 MAKE-SET(v)
Algorithm 4 end
mgm 5 sort edges in E into nondecreasing order by weight w
6 for each edge (u,v) € E, taken in nondecreasing order
do
7 if FIND-SET(u) # FIND-SET(v) then
Algorithm 8 A=AU{(u,v)}
9 UNION(u, v)
10 end
11 end
12 return A

Algorithm 1: MST-Kruskal(G, w)

Nelsisdk

Lincoln

CSCE423/823

Introduction

Lincoln

CSCE423/823

Introduction

Kruskal's
Algorithm

Algorithm

Lincoln

Introduction

Kruskal's
Algorithm
Introduction
The Algorithm

Prim's
Algorithm

Introduction

Given a connected, undirected graph G = (V, E), a spanning tree is
an acyclic subset 7" C E that connects all vertices in V'

o T acyclic = a tree

o T connects all vertices = spans G
If G is weighted, then T"s weight is w(T') = >, ,)er w(u, v)
A minimum weight spanning tree (or minimum spanning tree,
or MST) is a spanning tree of minimum weight

o Not necessarily unique

Applications: anything where one needs to connect all nodes with
minimum cost, e.g. wires on a circuit board or fiber cable in a
network

Kruskal's Algorithm

o Greedy algorithm: Make the locally best choice at each step

@ Starts by declaring each vertex to be its own tree (so all nodes
together make a forest)

o lteratively identify the minimum-weight edge (u,v) that connects
two distinct trees, and add it to the MST T', merging u's tree with

v's tree

Pseudocode for Kruskal's Algorithm (2)

o FIND-SET(u) returns a representative element from the set (tree)
that contains u

@ UNION(u,v) combines u's tree to v's tree
@ These functions are based on the disjoint-set data structure

@ More on this later

Nebizdka Exam pl © (1)

Lincoln

Introduction

Kruskal's

Prim's
Algorithm

e Example (3)

Lincoln

Introduction

Kruskal's
Algorithm

[

Prim's
Algorithm

Disjoint-Set Data Structure (2)

Lincoln

@ DSDS implementations support the following functions:
o MAKE-SET(z) takes element = and creates new set {x}; returns
pointer to = as set's representative

o UNION(z,y) takes «'s set (S;) and y's set (S, assumed disjoint from
L(:'(,:f,‘,m Sz), merges them, destroys S, and S, and returns representative for
Introduction | new set from S, U S,
e o FIND-SET(z) returns a pointer to the representative of the unique set
Data Structure that contains x
@ Section 21.3: can perform d D-S operations on e elements in time

O(da(e)), where a(e) = o(lg* e) = o(loge) is very slowly growing:

0 ifo<e<?2
1 ife=3
2 if4<e<7
3 if 8 <e <2047
4 if 2048 < e < 16512

Introduction

Prim's
Algorithm

ale) =

W ol (2)

Lincoln

Introduction

Kruskal's

Di et
Data Structure

Analysis

Prim's
Algorithm

Disjoint-Set Data Structure

Lincoln
CSCE423/823

Introduction

@ Given a universe U = {z1,...,x,} of elements (e.g. the vertices in
a graph G), a DSDS maintains a collection S = {S1,..., Sk} of
disjoint sets of elements such that

Kruskal's

Example
Disjoint. Set
Data Structure

o Each element z; is in exactly one set S
o No set S; is empty

s @ Membership in sets is dynamic (changes as program progresses)

Algorithm

o Each set S € S has a representative element z € S
o Chapter 21

Analysis of Kruskal's Algorithm

Lincoln

Introduction

Krusial's @ Sorting edges takes time O(|E|log|E|)

o Number of disjoint-set operations is O(|V| + |E|) on O(|V])
5 elements, which can be done in time

O(([V] + B a(IV])) = O(IE|a(IV]) since |E| > V|~ 1
Rigorihm e Since a(|V]) = o(log|V]) = O(log |E|), we get total time of
O(|E|log | E|) = O([E| log |V']) since log | E| = O(log V')

W2eted Prim’s Algorithm

Lincoln

o Greedy algorithm, like Kruskal's

@ In contrast to Kruskal's, Prim’s algorithm maintains a single tree
Algorithn
L rather than a forest
The Algorithm

Example @ Starts with an arbitrary tree root r

Analysis

@ Repeatedly finds a minimum-weight edge that is incident to a node
not yet in tree

Weeet=Y Pseudocode for Prim’s Algorithm (2)

Lincoln

o key[v] is the weight of the minimum weight edge from v to any node

Introduction already in MST
Kruskal's
it o EXTRACT-MIN uses a minimum heap (minimum priority queue)
Prim's data structure
At o Binary tree where the key at each node is < keys of its children
e o Thus minimum value always at top
Analysis o Any subtree is also a heap
o Height of tree is |lgn|
o Can build heap on n elements in O(n) time
o After returning the minimum, can filter new minimum to top in time
O(logn)
o Based on Chapter 6

Nebisdka Exam p| € (2)

Lincoln

Introduction

Kruskal's
Algorithm
Prim's

Algorithm

Nebla’"""‘s"h’ Pseudocode for Primvs Algorithm

Lincoln

A=0
Introduction for each vertex v € V do
key[v
Kruskal’s] = NIL
Algorithm
end
Prim's key[r] =
Algorithm Q=V
Introduction while Q # 0 do

The Algorithm u = EXTRACT-MIN(Q)

for each v € Adj[u] do
if v € Q and w(u,v) < key[v] then
o] = u
keylv] = w(u,v)

end

e
O ARWNROORNOU B WN -

end

Algorithm 2: MST-Prim(G,w,)

sl Example (1)

Introduction

Kruskal's
Algorithm

WeteY Analysis of Prim's Algorithm

Lincoln

o Invariant: Prior to each iteration of the while loop:
@ Nodes already in MST are exactly those in V '\ Q
@ For all vertices v € Q, if w[v] # NIL, then key[v] < oo and key[v] is
the weight of the lightest edge that connects v to a node already in
the tree

Introduction

Kruskal's
Algorithm

o Time complexity:
o Building heap takes time O(|V|)
o Make |V| calls to EXTRACT-MIN, each taking time O(log |V])
o For loop iterates O(|E|) times
@ In for loop, need constant time to check for queue membership and
O(log |V]) time for decreasing v's key and updating heap
o Yields total time of O(|V|log |V|+ |E|log|V|) = O(|E|log|V])
o Can decrease total time to O(|E| + |V|log [V|) using Fibonacci heaps

Analysis

