Nelsisck

Lincoln

CSCE4: 3
Computer Science & Engineering 423/823
protueton Design and Analysis of Algorithms
Types of
Grapl
Regeamie Lecture 03 — Elementary Graph Algorithms (Chapter 22)
El tary
G
Al
Applications Stephen Scott
(Adapted from Vinodchandran N. Variyam)
Spring 2010
1/29

Nebiaska Types of Graphs

Lincoln

Introduction o A (simple, or undirected) graph G = (V, E) consists of V, a
S nonempty set of vertices and E a set of unordered pairs of distinct
vertices called edges

(0) V={A.B.CDE}

Graph a
4\ E={ (A.D),(A.E),(B,D),
ofRoRe (B.E),(C.D),(CE)}

Types of Graphs (3)

Lincoln

@ A weighted graph is an undirected or directed graph with the
additional property that each edge e has associated with it a real
number w(e) called its weight

3

Introduction

Types of
Graphs

Elementary
Graph
Algorithms

Applications

@ Other variations: multigraphs, pseudographs, etc.

Neveel |ntroduction

Lincoln

CSCE423/823

Introduction
Types of @ Graphs are abstract data types that are applicable to numerous
Clits problems
o Can capture entities, relationships between them, the degree of the
relationship, etc.
@ This chapter covers basics in graph theory, including representation,
Applications and algorithms for basic graph-theoretic problems

o We'll build on these later this semester

Types of Graphs (2)

Lincoln

CSCE423/823

o A directed graph (digraph) G = (V, E)) consists of V, a nonempty
set of vertices and F a set of ordered pairs of distinct vertices called
Introduction edges

Types of
Graphs

Representations
of Graphs

Elementary

Applications

Representations of Graphs

Lincoln

Introduction

Types of
Graphs
Representations| o Two common ways of representing a graph: Adjacency list and
of Graphs . -
adjacency matrix
Mot e Let G = (V, E) be a graph with n vertices and m edges
Elementary
Applications

Nebisdl AdjacenCy List

Lincoln

@ For each vertex v € V, store a list of vertices adjacent to v

Introduction . . .
TM(t ' @ For weighted graphs, add information to each node
ypes of

Srerks @ How much is space required for storage?

Representation|

—= @ G
@=L

e——=b (W

Adjacency List
Adjacency
Matrix

Elementary
Graph
Algorithms

Applications

WcERY Breadth-First Search (BFS)

Lincoln

o Given a graph G = (V, E) (directed or undirected) and a source node
s € V, BFS systematically visits every vertex that is reachable from s

Introduction

Types of
@ Uses a queue data structure to search in a breadth-first manner
TS @ Creates a structure called a BFS tree such that for each vertex
A v € V, the distance (number of edges) from s to v in tree is the
= shortest path in G
h

Depth-First @ Initialize each node's color to WHITE

Applications

As a node is visited, color it to GRAY (= in queue), then BLACK (=
finished)

NS BES Exam ple

Lincoln

Introduction

()
Types of
Graphs
P.:(_ :(:mon; , s t "
D—0 -

Elementary
ol MT/T o
Algorithms & @ @=0C— 222
Breadth-First v w x y Vv w x y

r s t u
Applications

P

Nebiadka Adj acency Matrix

Lincoln

@ Use an n x n matrix M, where M (i,7) =1 if (¢,) is an edge, 0

otherwise
Introduction
T o If G weighted, store weights in the matrix, using oo for non-edges
Graphs . i
@ How much is space required for storage?
Adjacency
Ve

Elementary
Graph
Algorithms

Applications

O—=—=—=OpP
,FOOoOO—Oo
OO =D
—_FOoO~—O R~
D= ——or

00 g e

BFS Algorithm

Lincoln

1 for each vertex u € V' \ {s} do
2 color[u] = WHITE
3 dlu] = 0o
Introduction 2] = N1t
Types of 5 end
Graphs 6 color[s] = Gravy
Representation: 7 ds|=0
of Graphs 8 xls] =nu
9 Q=0
Elem:mw 10 Enqueve(Q, s)
2rap 11 while Q # 0 do
Gl EQlithns 12 u = DEQUEVE(Q)
el 13 for each v € Adj[u] do
14 if color[v] == WHITE then
15 color[v] IRAY
Applications 16 dfv] = d[u] + 1
17 7] = u
18 ENQUEUE(Q, v)
19 end
20 end
21 color[u] = BLACK
22 end

Nebidska

Lincoln

Introduction

Types of
Graphs

(B

©
~E

Representations
of Graphs

Elementary

Graph 4 S ’ &

Algorithms

Breadth-First

Search Q9
v ow x .y

Applications

W\2eNeY BFS Properties

Lincoln

Introduction

@ What is the running time?
Types of
s o Hint: How many times will a node be enqueued?
ey o After the end of the algorithm, d[v] = shortest distance from s to v

of Graphs

= Solves unweighted shortest paths

Elementary

R o Can print the path from s to v by recursively following 7[v], 7z [v]],
gorithms

Breadsh-First etc.

Depth-First. o If d[v] == oo, then v not reachable from s
Applications = Solves reachability

WLeetd DFS Algorithm

troduction 1 for each vertex u € V do
2 color[u] = WHITE
e 3 mlu] = NIL
= 4 end
Elementary 5 time =0
ﬁ";f,"'thms 6 for each vertexu € V do
7 if color[u] == WHITE then
Depth-First 8 DFS-VisIT(u)
Applications 9 end
10 end

Algorithm 2: DFS(G)

EVEREY DES Example

Introduction

é‘ . x;_b A
Types of [‘ > T g
Graphs)
R @lmsd (3>
* y z

ntations|

of Graphs
@)

Elementary

Graph

Algorithms
First

Search

Applications

SR Depth-First Search (DFS)

Lincoln

Introduction

Dpesof @ Another graph traversal algorithm
Representations @ Unlike BFS, this one follows a path as deep as possible before
ETLD backtracking
G o Where BFS is “queue-like,” DFS is “stack-like"
@ Tracks both “discovery time” and “finishing time” of each node,
which will come in handy later
Applications
$eoed DFS Algorithm (2)

1 color[u] = GRAY
Introduction 2 time = time + 1
g 3 dlu] = time
4 for each v € Adj[u] do
5 if color[v] WHITE then
6 vl =u
7 DFS-VisiT(v)
Depth-First 8 End
Applications 9 e"d
10 color[u] = BLACK
11 f[u] = time = time + 1

Algorithm 3: DFS-Visit(u)

Qi DFS Example (2)

Introduction

Types of
Graphs

Representations
of Graphs

Applications

N]me]jv DFS Properties

Lincoln

Introduction

Types of

Graphs o Time complexity same as BFS: O(|V| + |E|)

Regeanade, @ Vertex u is a proper descendant of vertex v in the DF tree iff

of Graphs

Hementan dv] < d[u] < flu] < flv]

Graph = Parenthesis structure: If one prints “(u" when discovering u and
3 “u)" when finishing u, then printed text will be a well-formed

Depth-First parenthesized sentence

Search

Applications

W=etleY Application: Topological Sort

Lincoln

A directed acyclic graph (dag) can represent precedences: an edge (z,y)
implies that event/activity must occur before y

Introduction

Types of
5110
Elementary
Graph
Algorithms
Applications
24l Topological Sort Algorithm

@ Call DFS algorithm on dag G
Introduction

@ As each vertex is finished, insert it to the front of a linked list

© Return the linked list of vertices
G @ Thus topological sort is a descending sort of vertices based on DFS
Algorithms

ot finishing times

Applications .
Topological Sort o Why does it work?

o When a node is finished, it has no unexplored outgoing edges; i.e. all
its descendant nodes are already finished and inserted at later spot in
final sort

e DFS Properties (2)

CSCE423/823

o Classification of edges into groups
o A tree edge is one in the depth-first forest

M o A back edge (u,v) connects a vertex u to its ancestor v in the DF
Types of tree (includes self-loops)
Graphs o A forward edge is a nontree edge connecting a node to one of its DF

tree descendants

o A cross edge goes between non-ancestral edges within a DF tree or
between DF trees

o See labels in DFS example

g:;\(rwsx o Example use of this property: A graph has a cycle iff DFS discovers a
p— back edge (application: deadlock detection)
@ When DFS first explores an edge (u,v), look at v's color:
o color[v] == WHITE implies tree edge
o color[v] == GRAY implies back edge
o color[v] == BLACK implies forward or cross edge

saed Application: Topological Sort (2)

CSCE423/823

Introduction

Types of

Gepiis A topological sort of a dag G is an linear ordering of its vertices such
§;§’;3§;};"“°”' that if G contains an edge (u,v), then u appears before v in the ordering

Elementary

1718 /16 1215 13/14 178 6/7 25 3i4

Application: Strongly Connected Components

Lincoln

Given a directed graph G = (V, E), a strongly connected component
(SCC) of G is a maximal set of vertices C' C V such that for every pair of

Introduction vertices u,v € C' w is reachable from v and v is reachable from u
Types of
G:':phs i E

7
e (/1) Ty @-—m*f;l!mg ,,,,, e j

Algorithms i
Ap g
Topological Sort

Strongly .
Connected

Componnts |f)/|3)__._)("5,'4

e !

What are the SCCs of the above graph?

T

h

WEetleY Transpose Graph

Lincoln

@ Our algorithm for finding SCCs of G depends on the transpose of
G, denoted GT
introduction o GTis simply G with edges reversed
e o Fact: GT and G have same SCCs. Why?
b
Strongly
Connected
Components

il SCC Algorithm Example

Lincoln

After first round of DFS:

Introduction (S N d
/ 4 M__,,_\kiijf),
|
Srong\v ; K_l 2”’ l 5)—“-#_)..(3/4 " = zjz/ﬁm‘h("g{f‘]/-i-x/
Components P f o h

Which node is first one to be visited in second DFS?

SCC Algorithm Analysis

Lincoln

Introduction

@ What is its time complexity?
@ How does it work?
@ Let z be node with highest finishing time in first DFS
S Q@ In GT, z's component C' has no edges to any other component, so
Graph the second DFS's tree edges define exactly x's component

Gl © Now let 2’ be the next node explored in a new component C’

@ The only edges from C’ to another component are to nodes in C, so
Stronly | the DFS tree edges define exactly the component for '
oot @ Andsoon...

29/29

Lincoln

W2et-d SCC Algorithm

CSCE423/823

Introduction

iy @ Call DFS algorithm on G

R 0 Compute GT

A © Call DFS algorithm on GT, looping through vertices in order of
Rzatiinm decreasing finishing times from first DFS call

App

= @ Each DFS tree in second DFS run is an SCC in G

Strongly
Connected
Components

SCC Algorithm Example (2)

Lincoln

CSCE423/823

After second round of DFS:

Introduction

Types of a b
Graphs
Representations

of Graphs

Elementary
Graph
Algorithms

ations

Strongly
Connected
Components

