

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 10 — Greedy Algorithms (Chapter 16)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Introduction

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

- Greedy methods: Another optimization technique
- Similar to dynamic programming in that we examine subproblems, exploiting optimial substructure property
- Key difference: In dynamic programming we considered all possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- Examples: Minimum spanning tree, single-source shortest paths

Activity Selection

CSCE423/823

Introduction

Activity Selection

Optimal Substructure Recursive Definition Greedy Choice Recursive Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

- Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room
- This is an example of the activity selection problem:
 - Given: Set $S = \{a_1, a_2, \dots, a_n\}$ of n proposed activities that wish to use a resource that can serve only one activity at a time
 - a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$
 - If a_i is scheduled to use the resource, it occupies it during the interval $[s_i, f_i) \Rightarrow$ can schedule both a_i and a_j iff $s_i \geq f_j$ or $s_j \geq f_i$ (if this happens, then we say that a_i and a_j are **compatible**)
 - Goal is to find a largest subset $S' \subseteq S$ such that all activities in S' are pairwise compatible
 - Assume that activities are sorted by finish time:

$$f_1 \leq f_2 \leq \cdots \leq f_n \text{ for all problems}$$

Activity Selection (2)

CSCE423/823

Introduction

Activity Selection

Optimal Substructure Recursive Definition Greedy Choice Recursive Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

Huffman Coding

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	2 14	16

Sets of mutually compatible activities: $\{a_3,a_9,a_{11}\}$, $\{a_1,a_4,a_8,a_{11}\}$, $\{a_2,a_4,a_9,a_{11}\}$

Optimal Substructure of Activity Selection

CSCE423/823

Introduction

Activity Selection

Optimal Substructure

Recursive Definition Greedy Choice Recursive Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

- Let S_{ij} be set of activities that start after a_i finishes and that finish before a_i starts
- Let $A_{ij} \subseteq S_{ij}$ be a largest set of activities that are mutually compatible
- ullet If activity $a_k \in A_{ij}$, then we get two subproblems: S_{ik} and S_{kj}
- If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into A_{ij} and get a better solution
- Thus if we pick an activity a_k to be in an optimal solution and then solve the subproblems, our optimal solution is $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, which is of size $|A_{ik}| + |A_{kj}| + 1$

Recursive Definition

CSCE423/823

Introduction

Activity Selection

Optimal Substructure

Substructure

Definition Greedy Choice

Recursive

Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

Huffman Coding ullet Let c[i,j] be the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

- ullet We try all a_k since we don't know which one is the best choice...
- ...or do we?

Greedy Choice

CSCE423/823

Introduction

Activity
Selection
Optimal
Substructure
Recursive
Definition

Greedy Choice Recursive Algorithm

Iterative Algorithm Greedy vs Dynamic

Greedy vs Dynamic Programming

- What if, instead of trying all activities a_k , we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- This is a greedy choice in that it maximizes the amount of time left over to schedule other activities
- Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be set of activities that start after a_k finishes
- If we greedily choose a_1 first (with earliest finish time), then S_1 is the only subproblem to solve

Greedy Choice (2)

CSCE423/823

Introduction

Activity
Selection
Optimal
Substructure
Recursive

Definition Greedy Choice

Recursive Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

- Theorem: Consider any nonempty subproblem S_k and let a_m be an activity in S_k with earliest finish time. Then a_m is in some maximum-size subset of mutually compatible activities of S_k
 - \bullet Let A_k be an optimal solution to S_k and let a_j have earliest finish time of all in A_k
 - If $a_j = a_m$, we're done
 - ullet If $a_j
 eq a_m$, then define $A_k' = A_k \setminus \{a_j\} \cup \{a_m\}$
 - Activities in A' are mutually compatible since those in A are mutually compatible and $f_m \leq f_j$
 - \bullet Since $|A_k'|=|A_k|,$ we get that A_k' is a maximum-size subset of mutually compatible activities of S_k that includes a_m
- What this means is that there is an optimal solution that uses the greedy choice

Recursive Algorithm

CSCE423/823

Introduction

Activity Selection

Optimal Substructure Recursive Definition

Greedy Choice

Recursive Algorithm

Algorithm Iterative Algorithm

Greedy vs

Dynamic Programming

Huffman Coding

```
1 m = k + 1
```

 ${\bf 2} \ \ {\bf while} \ m \leq n \ {\it and} \ s[m] < f[k] \ {\bf do}$

$$m = m + 1$$

4 end

5 if $m \leq n$ then

6 return $\{a_m\} \cup \text{RECURSIVE-ACTIVITY-}$ SELECTOR(s, f, m, n)

7 else return ∅

Algorithm 1: Recursive-Activity-Selector(s, f, k, n)

Recursive Algorithm (2)

CSCE423/823

Introduction

Activity Selection

Optimal Substructure Recursive Definition

Greedy Choice

Recursive Algorithm

Iterative Algorithm

Greedy vs

Dynamic Programming

Iterative Algorithm

CSCE423/823

Introduction

Activity Selection

Optimal Substructure Recursive Definition Greedy Choice Recursive

Algorithm Iterative Algorithm

Greedy vs Dynamic Programming

Huffman Coding

```
1 A = \{a_1\}
2 k = 1
3 for m=2 to n do
      if s[m] \geq f[k] then
           A = A \cup \{a_m\}
           k=m
  end
 return A
```

Algorithm 2: Greedy-Activity-Selector(s, f, n)

What is the time complexity? What would it have been if we'd approached this as a DP problem?

Greedy vs Dynamic Programming

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

- When can we get away with a greedy algorithm instead of DP?
- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - \bullet There are n items that a thief can steal, item i weighing w_i pounds and worth v_i dollars
 - \bullet The thief's goal is to steal a set of items weighing at most W pounds and maximizes total value
 - In the 0-1 knapsack problem, each item must be taken in its entirety (e.g. gold bars)
 - In the **fractional knapsack problem**, the thief can take part of an item and get a proportional amount of its value (e.g. gold dust)

Greedy vs Dynamic Programming (2)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

- There's a greedy algorithm for the fractional knapsack problem
 - ullet Sort the items by v_i/w_i and choose the items in descending order
 - Has greedy choice property, since any optimal solution lacking the greedy choice can have the greedy choice swapped in
 - Works because one can always completely fill the knapsack at the last step
- \bullet Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is pseudopolynomial
 - Decision problem is NP-complete

Greedy vs Dynamic Programming (3)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding

Problem instance

0-1 (greedy is suboptimal)

Fractional

Huffman Coding

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman

Coding

Algorihtm

Greedy Choice

Property

Optimal

Substructure

Property

- Interested in encoding a file of symbols from some alphabet
- Want to minimize the size of the file, based on the frequencies of the symbols
- \bullet A **fixed-length code** uses $\lceil \log_2 n \rceil$ bits per symbol, where n is the size of the alphabet C
- A variable-length code uses fewer bits for more frequent symbols

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Huffman Coding (2)

CSCE423/823

Can represent any encoding as a binary tree

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding Algorihtm

Algorihtm
Greedy Choice
Property
Optimal
Substructure
Property

If c.freq = frequency of codeword and $d_T(c)$ = depth, cost of tree T is

$$B(T) = \sum_{c} c.freq \cdot d_T(c)$$

Algorihtm for Optimal Codes

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding

Algorihtm
Greedy Choice
Property
Optimal
Substructure
Property

- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its tree
- ullet Given alphabet C (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- Frequency of new subtree is the sum of the frequencies of its children
- Then add the subtree back into the set for future consideration

Algorihtm for Optimal Codes (2)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding

Algorihtm

Greedy Choice Property Optimal Substructure Property

```
1 n = |C|
2 Q = C // min-priority queue
3 for i = 1 to n - 1 do
       allocate node z
       z.left = x = \text{Extract-Min}(Q)
       z.right = y = \text{Extract-Min}(Q)
       z.freq = x.freq + y.freq
       INSERT(Q, z)
  end
10 return EXTRACT-MIN(Q) // return root
```

Algorithm 3: $\mathsf{Huffman}(C)$

Time complexity: n-1 iterations, $O(\log n)$ time per iteration, total $O(n\log n)$

Algorithm for Optimal Codes (3)

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman

Algorihtm Greedy Choice Property Optimal Substructure

Property

Optimal Coding Has Greedy Choice Property

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programmin

Programming
Huffman

Algorihtm Greedy Choice Property

Coding

Optimal Substructure Property

- Lemma: Let C be an alphabet in which symbol $c \in C$ has frequency c.freq and let $x,y \in C$ have lowest frequencies. Then there exists an optimal prefix code for C in which codewords for x and y have same length and differ only in the last bit.
- **Proof:** Let T be a tree representing an arbitrary optimal prefix code, and let a and b be siblings of maximum depth in T
- \bullet Assume, w.l.o.g., that $x.freq \leq y.freq$ and $a.freq \leq b.freq$
- Since x and y are the two least frequent nodes, we get $x.freq \leq a.freq$ and $y.freq \leq b.freq$
- Convert T to T' by exchanging a and x, then convert to T'' by exchanging b and y
- In T'', x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic

Dynamic Programming

Huffman Coding

Algorihtm Greedy Choice Property

Optimal Substructure Property

Optimal Coding Has Greedy Choice Property (3)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding

Algorihtm Greedy Choice Property

Optimal Substructure Property Cost difference between T and T' is B(T) - B(T'):

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - x.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$$

since $a.freq \ge x.freq$ and $d_T(a) \ge d_T(x)$

Similarly, $B(T') - B(T'') \ge 0$, so $B(T'') \le B(T)$, so T'' is optimal

Optimal Coding Has Optimal Substructure Property

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding Algorihtm Greedy Choice Property

Optimal Substructure Property

- **Lemma:** Let C be an alphabet in which symbol $c \in C$ has frequency c.freq and let $x,y \in C$ have lowest frequencies. Let $C' = C \setminus \{x,y\} \cup \{z\}$ and z.freq = x.freq + y.freq. Let T' be any tree representing an optimal prefix code for C'. Then T, which is T' with leaf z replaced by internal node with children x and y, represents an optimal prefix code for C
- **Proof:** Since $d_T(x) = d_T(y) = d_{T'}(z) + 1$,

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = (x.freq + y.freq)(d_{T'}(z) + 1)$$
$$= z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$$

Also, since
$$d_T(c)=d_{T'}(c)$$
 for all $c\in C\setminus\{x,y\}$, $B(T)=B(T')+x.freq+y.freq$ and $B(T')=B(T)-x.freq-y.freq$

Optimal Coding Has Optimal Substructure Property (2)

CSCE423/823

Introduction

Activity Selection

Greedy vs Dynamic Programming

Huffman Coding Algorihtm Greedy Choice Property

Optimal Substructure Property

- Assume that T is not optimal, i.e. B(T'') < B(T) for some T''
- \bullet Assume w.l.o.g. (based on previous lemma) that x and y are siblings in $T^{\prime\prime}$
- In T'', replace x, y, and their parent with z such that z.freq = x.freq + y.freq, to get T''':

$$\begin{array}{lll} B(T''') & = & B(T'') - x.freq - y.freq & \text{(from prev. slide)} \\ & < & B(T) - x.freq - y.freq & \text{(from T suboptimal assumption)} \\ & = & B(T') & \text{(from prev. slide)} \end{array}$$

ullet This contradicts assumption that T' is optimal for C'