Nebiaska

Lincoln

CSCE423/823

Introduction

Activity

Selection
Greedy vs
Dynamic

Programming

Huffman
Coding

1/24

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 10 — Greedy Algorithms (Chapter 16)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

mailto:sscott@cse.unl.edu

Wevedal |ntroduction

Lincoln

CSCE423/823

@ Greedy methods: Another optimization technique

Introduction

— @ Similar to dynamic programming in that we examine subproblems,
election

exploiting optimial substructure property
Greedy_vs
EAL o Key difference: In dynamic programming we considered all possible
T subproblems
Coding

@ In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal
choice)

@ Examples: Minimum spanning tree, single-source shortest paths

N
)
=

WEeetie] Activity Selection

Lincoln

CSCE423/823

@ Consider the problem of scheduling classes in a classroom
@ Many courses are candidates to be scheduled in that room, but not

Introduction all can have it (can't hold two courses at once)

S ° Wa'nt. to maximize utilization of the room

R @ This is an example of the activity selection problem:

%:tst:me o Given: Set S = {a1,as,...,a,} of n proposed activities that wish to
Greedy Choice use a resource that can serve only one activity at a time

Aigorithm e a; has a start time s; and a finish time f;, 0 < s; < f; < o0

Aigortim o If a; is scheduled to use the resource, it occupies it during the interval
gryieadnyqizs [si, fi) = can schedule both a; and a; iff s; > f; or s; > f; (if this
Programming happens, then we say that a; and a; are compatible)

Huffman o Goal is to find a largest subset S’ C S such that all activities in S’ are
Coding

pairwise compatible
o Assume that activities are sorted by finish time:

fi<fo<---< Sy

hLect=l Activity Selection (2)

Lincoln

CSCE423/823

Introduction

Activity T
Selection 1
Optimal
Substructure S;
Recursive
Definition f .
Greedy Choice ?
Recursive

Algorithm

Iterative
Algorithm

6 7 8 9 10 11
5 6 8 8 2 12
9 10 11 12 14 16

S Ol W

4 5
5 3
79

e
o1 WIN

ot Sets of mutually compatible activities: {as,ag,a11}, {a1,a4,as,a11},
reedy vs
Dynamic {0/27 a4, ag, all}

Programming

Huffman
Coding

Ne‘BﬂvERSWV]or

Lincoln

CSCE423/823

Introduction

Activity

Selection
Optimal
Substructure

Recursive
Definition

Greedy Choice
Recursive
Algorithm
Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Optimal Substructure of Activity Selection

o Let §;; be set of activities that start after a; finishes and that finish
before a; starts

o Let A;; C S;; be a largest set of activities that are mutually
compatible
o If activity a;, € A;j;, then we get two subproblems: S;; and Sj;
o If we extract from A;; its set of activities from Sj;, we get
Air, = A;j N S, which is an optimal solution to S;y,
o If it weren't, then we could take the better solution to S;;, (call it A%;)
and plug its tasks into A;; and get a better solution
@ Thus if we pick an activity aj to be in an optimal solution and then
solve the subproblems, our optimal solution is
Az’j =AU {ak} U Akjr which is of size ’Azk’ + ’Akﬂ +1

Wevetiad Recursive Definition

Lincoln

CSCE423/823

Introduction

Activity o Let c[i, j] be the size of an optimal solution to S;;

Selection

Shnemructure .
Renvsie i =1 " 5 =0
Greedy Choice j ma‘X(lkGS” {C[i, k] + C[IC7 j] + 1} |f SZ] # @

Recursive
Algorithm

Iterative . y . . .
Algorithm o We try all aj since we don't know which one is the best choice...
Greedy vs

Dynamic @ ...0r C|O We?

Programming

Huffman
Coding

Nebtaska Greedy Choice

Lincoln

CSCE423/823

Introduction @ What if, instead of trying all activities aj, we simply chose the one
Activity with the earliest finish time of all those still compatible with the
o scheduled ones?

Substructure

Recursive @ This is a greedy choice in that it maximizes the amount of time left
Sl e over to schedule other activities

Algorithm

oratie o Let Sy ={a; € S:s; > fr} be set of activities that start after ay,
Greedy vs finishes

Dynamic

Programming o If we greedily choose a; first (with earliest finish time), then S is
S the only subproblem to solve

Ne‘BﬂvERSWV]or

Lincoln

CSCE423/823

Introduction

Activity

Selection
Optimal
Substructure

Recursive
Definition
Greedy Choice
Recursive
Algorithm
Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy Choice (2)

@ Theorem: Consider any nonempty subproblem S), and let a,, be an
activity in Sy with earliest finish time. Then a,, is in some
maximum-size subset of mutually compatible activities of Sy

o Let Ay be an optimal solution to S, and let a; have earliest finish
time of all in Ay,

o If a; = ay,, we're done

o If a; # ap,, then define A; = Ap \ {a;} U{an}

o Activities in A" are mutually compatible since those in A are mutually
compatible and f,, < f;

o Since |A}| = |Ax|, we get that A} is a maximum-size subset of
mutually compatible activities of Sy that includes a,,

@ What this means is that there is an optimal solution that uses the
greedy choice

WEvered Recursive Algorithm

Lincoln

CSCE423/823

Introduction 1 m= k + 1

Acthity 2 while m <n and s[m| < f[k] do

election

Optimal 3 m=m-+1

Substructure

Befmain 4 end

Greedy Choice .

Ef;;ﬁi\]f; 5 if m <n then

Niarith 6 return {a,,}lU RECURSIVE-ACTIVITY-
Greedy vs SELECTOR(S, f, m, n)

Dynamic

Programming 7 else return @

Huffman N . -
Coding Algorithm 1: Recursive-Activity-

Selector(s, f,k,n)

WLeci=l Recursive Algorithm (2)

CSCE423/823 ko k&
0 - o —
G
[ReCURSIVE-ACTIVITY-SELECTOR(s £ 0, 1 1)
Introduction 2 3 5 RECURSIVE-ACTIVITY-SELECTOR(. £, 1. 11)
Activi
ct F)/ 30 6
Selection
Optimal 4 5 7
Substructure |
Recursive SELECTOR(s, /, 4, 11
Definition :
. 5 3 9
Greedy Choice
Recursive .
Algorithm o5
Iterative
Algorithm 76 10
Greedy.vs s 85 on
Dynamic
Programming s 8 1
Huffman
. 02
Coding
LRI P [

etk terative Algorithm

Lincoln

CSCE423/823

A={a}
k=1
for m =2 ton do
if sjm] > f[k] then
A=AU{an}

k=m

Introduction

Activity

Selection
Optimal
Substructure

Recursive
Definition

Greedy Choice
Recursive
Algorithm
Iterative
Algorithm

S s W NN =

-~

end
Greedy vs
Dynamic 8 return A

Programming

Huffman Algorithm 2: Greedy-Activity-Selector(s, f,n)

Coding

What is the time complexity? What would it have been if we'd
11)24 approached this as a DP problem?

WEvet=l Greedy vs Dynamic Programming

Lincoln

CSCE423/823

@ When can we get away with a greedy algorithm instead of DP?

Inroduction @ When we can argue that the greedy choice is part of an optimal
Activity

Selection solution, implying that we need not explore all subproblems

Greedy vs @ Example: The knapsack problem

Ery;;rzr:ming o There are n items that a thief can steal, item ¢ weighing w; pounds
Huffman and worth v; dollars

Coding

o The thief’s goal is to steal a set of items weighing at most W pounds
and maximizes total value

o In the 0-1 knapsack problem, each item must be taken in its entirety
(e.g. gold bars)

o In the fractional knapsack problem, the thief can take part of an
item and get a proportional amount of its value (e.g. gold dust)

Weci=Y Greedy vs Dynamic Programming (2)

CSCE423/823

Introduction @ There's a greedy algorithm for the fractional knapsack problem

Activity e Sort the items by v; /w; and choose the items in descending order
Selection o Has greedy choice property, since any optimal solution lacking the
g;ie:n{izs greedy choice can have the greedy choice swapped in

Programming @ Works because one can always completely fill the knapsack at the last
Huffman step

Coding

@ Greedy strategy does not work for 0-1 knapsack, but do have
O(nW)-time dynamic programming algorithm
o Note that time complexity is pseudopolynomial
o Decision problem is NP-complete

13 /24

Lincoln

jtiid Greedy vs Dynamic Programming (3)

CSCE423/823

Introduction

Activity
Selection
Greedylve item 3
Dynamic e 2
Programming e
Huffman frem | 20 30.
Coding [10} l J
$60 $100 $120 knapsack =$220 =560 =3180 = $240
Problem instance 0-1 (greedy is suboptimal) Fractional

14 /24

Wevered Hyffman Coding

CSCE423/823

@ Interested in encoding a file of symbols from some alphabet

Introduction @ Want to minimize the size of the file, based on the frequencies of the
Activity symbols
Selection
T o A fixed-length code uses [log, n| bits per symbol, where n is the
EAL size of the alphabet C'
Huffman @ A variable-length code uses fewer bits for more frequent symbols
Codin
Algorim »
gree.d Choice a b c d e f
gf';'sm‘cme Frequency (in thousands) | 45 13 12 16 9 5
roperty

Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword | 0 101 100 111 1101 1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

15/24

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding
Algorihtm
Greedy Choice
Property
Optimal
Substructure
Property

Huffman Coding (2)

Can represent any encoding as a binary tree

If c.freq = frequency of codeword and dp(c) = depth, cost of tree T is

B(T) = Z c.freq-dr(c)

ceC

WEvered Algorihtm for Optimal Codes

CSCE423/823

eroduction @ Can get an optimal code by finding an appropriate prefix code,

Activity where no codeword is a prefix of another

Selection . .

ot @ Optimal code also corresponds to a full binary tree

reedy vs

EAL e Huffman's algorithm builds an optimal code by greedily building its

Huffman tree

Codin . . .

T » @ Given alphabet C' (which corresponds to leaves), find the two least

E'rf?f_iﬁ?o‘ce frequent ones, merge them into a subtree

ptima

= @ Frequency of new subtree is the sum of the frequencies of its children

@ Then add the subtree back into the set for future consideration

17 /24

ezl Algorihtm for Optimal Codes (2)

CSCE423/823

1 n=|C|
Introduction . ..

2 Q=C // min-priority queue
Activity .
Selection 3 fori=1ton—1do
Greedy vs 4 allocate node z
Dynamic
Programming 5 zleft = x = EXTRACT-MIN(Q)
Huffman ; — — _
AAE 6 z.right = y = EXTRACT-MIN(Q)
e 7 z.freq =x.freq+y.freq

reedy Choice
Property
Optimal 8 INSERT(Q, 2)
Substructure
Property g end
10 return EXTRACT-MIN(Q) // return root

Algorithm 3: Huffman(C)

oo Time complexity: n — 1 iterations, O(logn) time per iteration, total O(nlogn)

ezl Algorithm for Optimal Codes (3)

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding
Algorihtm
Greedy Choice
Property
Optimal
Substructure
Property

Nebl@fl? Optimal Coding Has Greedy Choice Property

CSCE423/823

@ Lemma: Let C be an alphabet in which symbol ¢ € C' has frequency
c.freq and let x,y € C have lowest frequencies. Then there exists
an optimal prefix code for C' in which codewords for z and y have

Introduction

Activit . . .

i same length and differ only in the last bit.

el @ Proof: Let T be a tree representing an arbitrary optimal prefix code,
Rrogramming and let a and b be siblings of maximum depth in T

Huffman

Coding @ Assume, w.l.o.g., that z.freq < y.freq and a.freq < b.freq

Algorihtm

Greedy Choice @ Since z and y are the two least frequent nodes, we get

i . x.freq < a.freq and y.freq < b.freq

Property

e Convert T to T" by exchanging a and x, then convert to T" by
exchanging b and y

@ In T”, x and y are siblings of maximum depth

20/24

NeBWERSWV] OF

Lincoln

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm
Greedy Choice
Property
Optimal
Substructure
Property

Optimal Coding Has Greedy Choice Property (2)

Wec=l Optimal Coding Has Greedy Choice Property (3)

CSCE423/823

Cost difference between T" and T" is B(T) — B(T"):

Introduction

S = > cfreq-dp(c) =Y c.freq-dp(c)
Greedy.vs ceC ceC
Ei/on;r’:rlvfming - m-f'f’eq ° dT(:U) + a-freq ° dT(a/) - .%'.freq * dT’ (.CL‘) - a.f’l“eq . dT/ (CL)
Huffman = x.freq-dp(z) + a.freq-dr(a) — x.freq - dr(a) — z.freq - dr(x)
oice = (a“'freq - x‘freq)(dT(a“) - dT(x)) Z 0
roperty
Optimal
et since a.freq > x.freq and dr(a) > dr(x)

Similarly, B(T") — B(T") > 0, so B(T") < B(T'), so T" is optimal

Nebrale@ Optimal Coding Has Optimal Substructure Property

CSCE423/823

@ Lemma: Let C be an alphabet in which symbol ¢ € C' has frequency
c.freq and let x,y € C have lowest frequencies. Let

Introduction C'=C\{z,y} U{z} and z.freq = z.freq + y.freq. Let T be any
Sy tree representing an optimal prefix code for C’. Then T', which is T’
Greedy vs with leaf z replaced by internal node with children x and y,

EAL represents an optimal prefix code for C

Huffman e Proof: Since dr(z) = dr(y) = dr(2) + 1,

Coding

Greedy Choice x.freq-dr(z) +y.freq-dr(y) = (z.freq+y.freq)(dr(z) + 1)
S = z.freq - dp(2) + (z.freq +y.freq)

Also, since dr(c) = dp(c) for all c € C'\ {z,y},
B(T) = B(T'") + x.freq + y.freq and
B(T") = B(T) — z.freq — y.freq

23/24

NeBWERSWV] OF

Lincoln

Optimal Coding Has Optimal Substructure Property (2)

CSCE423/823

@ Assume that 7' is not optimal, i.e. B(T") < B(T) for some T"

Introduction

Activity @ Assume w.l.0.g. (based on previous lemma) that = and y are siblings
Selection in T”

el @ In T”, replace x, y, and their parent with z such that

Programming Z.freq — x‘freq + y-fr6q| tO get T/l/:
Huffman
Coding

Algoribtm B(T") = B(T")—uz.freq—y.freq (from prev. slide)

:531¥t.5h°‘°3 < B(T)—x.freq—y.freq (from T suboptimal assumption)
ptimal

Bropersy - = B(T) (from prev. slide)

@ This contradicts assumption that 7" is optimal for C’

24 /24

	Introduction
	Activity Selection
	Optimal Substructure
	Recursive Definition
	Greedy Choice
	Recursive Algorithm
	Iterative Algorithm

	Greedy vs Dynamic Programming
	Huffman Coding
	Algorihtm
	Greedy Choice Property
	Optimal Substructure Property

