
CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 10 — Greedy Algorithms (Chapter 16)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

sscott@cse.unl.edu

1 / 24

mailto:sscott@cse.unl.edu

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Introduction

Greedy methods: Another optimization technique

Similar to dynamic programming in that we examine subproblems,
exploiting optimial substructure property

Key difference: In dynamic programming we considered all possible
subproblems

In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal
choice)

Examples: Minimum spanning tree, single-source shortest paths

2 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Activity Selection

Consider the problem of scheduling classes in a classroom

Many courses are candidates to be scheduled in that room, but not
all can have it (can’t hold two courses at once)

Want to maximize utilization of the room
This is an example of the activity selection problem:

Given: Set S = {a1, a2, . . . , an} of n proposed activities that wish to
use a resource that can serve only one activity at a time
ai has a start time si and a finish time fi, 0 ≤ si < fi <∞
If ai is scheduled to use the resource, it occupies it during the interval
[si, fi) ⇒ can schedule both ai and aj iff si ≥ fj or sj ≥ fi (if this
happens, then we say that ai and aj are compatible)
Goal is to find a largest subset S′ ⊆ S such that all activities in S′ are
pairwise compatible
Assume that activities are sorted by finish time:

f1 ≤ f2 ≤ · · · ≤ fn
3 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Activity Selection (2)

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

Sets of mutually compatible activities: {a3, a9, a11}, {a1, a4, a8, a11},
{a2, a4, a9, a11}

4 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Optimal Substructure of Activity Selection

Let Sij be set of activities that start after ai finishes and that finish
before aj starts

Let Aij ⊆ Sij be a largest set of activities that are mutually
compatible

If activity ak ∈ Aij , then we get two subproblems: Sik and Skj

If we extract from Aij its set of activities from Sik, we get
Aik = Aij ∩ Sik, which is an optimal solution to Sik

If it weren’t, then we could take the better solution to Sik (call it A′
ik)

and plug its tasks into Aij and get a better solution

Thus if we pick an activity ak to be in an optimal solution and then
solve the subproblems, our optimal solution is
Aij = Aik ∪ {ak} ∪Akj , which is of size |Aik|+ |Akj |+ 1

5 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Recursive Definition

Let c[i, j] be the size of an optimal solution to Sij

c[i, j] =

{
0 if Sij = ∅
maxak∈Sij{c[i, k] + c[k, j] + 1} if Sij 6= ∅

We try all ak since we don’t know which one is the best choice...

...or do we?

6 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy Choice

What if, instead of trying all activities ak, we simply chose the one
with the earliest finish time of all those still compatible with the
scheduled ones?

This is a greedy choice in that it maximizes the amount of time left
over to schedule other activities

Let Sk = {ai ∈ S : si ≥ fk} be set of activities that start after ak
finishes

If we greedily choose a1 first (with earliest finish time), then S1 is
the only subproblem to solve

7 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy Choice (2)

Theorem: Consider any nonempty subproblem Sk and let am be an
activity in Sk with earliest finish time. Then am is in some
maximum-size subset of mutually compatible activities of Sk

Let Ak be an optimal solution to Sk and let aj have earliest finish
time of all in Ak

If aj = am, we’re done
If aj 6= am, then define A′

k = Ak \ {aj} ∪ {am}
Activities in A′ are mutually compatible since those in A are mutually
compatible and fm ≤ fj
Since |A′

k| = |Ak|, we get that A′
k is a maximum-size subset of

mutually compatible activities of Sk that includes am

What this means is that there is an optimal solution that uses the
greedy choice

8 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Recursive Algorithm

m = k + 11

while m ≤ n and s[m] < f [k] do2

m = m+ 13

end4

if m ≤ n then5

return {am}∪ Recursive-Activity-6

Selector(s, f,m, n)

else return ∅7

Algorithm 1: Recursive-Activity-
Selector(s, f, k, n)

9 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Recursive Algorithm (2)

10 / 24

CSCE423/823

Introduction

Activity
Selection

Optimal
Substructure

Recursive
Definition

Greedy Choice

Recursive
Algorithm

Iterative
Algorithm

Greedy vs
Dynamic
Programming

Huffman
Coding

Iterative Algorithm

A = {a1}1

k = 12

for m = 2 to n do3

if s[m] ≥ f [k] then4

A = A ∪ {am}5

k = m6

end7

return A8

Algorithm 2: Greedy-Activity-Selector(s, f, n)

What is the time complexity? What would it have been if we’d
approached this as a DP problem?11 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy vs Dynamic Programming

When can we get away with a greedy algorithm instead of DP?

When we can argue that the greedy choice is part of an optimal
solution, implying that we need not explore all subproblems

Example: The knapsack problem
There are n items that a thief can steal, item i weighing wi pounds
and worth vi dollars
The thief’s goal is to steal a set of items weighing at most W pounds
and maximizes total value
In the 0-1 knapsack problem, each item must be taken in its entirety
(e.g. gold bars)
In the fractional knapsack problem, the thief can take part of an
item and get a proportional amount of its value (e.g. gold dust)

12 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy vs Dynamic Programming (2)

There’s a greedy algorithm for the fractional knapsack problem

Sort the items by vi/wi and choose the items in descending order
Has greedy choice property, since any optimal solution lacking the
greedy choice can have the greedy choice swapped in

Works because one can always completely fill the knapsack at the last
step

Greedy strategy does not work for 0-1 knapsack, but do have
O(nW)-time dynamic programming algorithm

Note that time complexity is pseudopolynomial
Decision problem is NP-complete

13 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Greedy vs Dynamic Programming (3)

Problem instance 0-1 (greedy is suboptimal) Fractional

14 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Huffman Coding

Interested in encoding a file of symbols from some alphabet

Want to minimize the size of the file, based on the frequencies of the
symbols

A fixed-length code uses dlog2 ne bits per symbol, where n is the
size of the alphabet C

A variable-length code uses fewer bits for more frequent symbols

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Fixed-length code uses 300k bits, variable-length uses 224k bits
15 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Huffman Coding (2)

Can represent any encoding as a binary tree

If c.freq = frequency of codeword and dT (c) = depth, cost of tree T is

B(T) =
∑
c∈C

c.freq · dT (c)

16 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Algorihtm for Optimal Codes

Can get an optimal code by finding an appropriate prefix code,
where no codeword is a prefix of another

Optimal code also corresponds to a full binary tree

Huffman’s algorithm builds an optimal code by greedily building its
tree

Given alphabet C (which corresponds to leaves), find the two least
frequent ones, merge them into a subtree

Frequency of new subtree is the sum of the frequencies of its children

Then add the subtree back into the set for future consideration

17 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Algorihtm for Optimal Codes (2)

n = |C|1

Q = C // min-priority queue2

for i = 1 to n− 1 do3

allocate node z4

z.left = x = Extract-Min(Q)5

z.right = y = Extract-Min(Q)6

z.freq = x.freq + y.freq7

Insert(Q, z)8

end9

return Extract-Min(Q) // return root10

Algorithm 3: Huffman(C)

Time complexity: n− 1 iterations, O(log n) time per iteration, total O(n log n)
18 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Algorithm for Optimal Codes (3)

19 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Optimal Coding Has Greedy Choice Property

Lemma: Let C be an alphabet in which symbol c ∈ C has frequency
c.freq and let x, y ∈ C have lowest frequencies. Then there exists
an optimal prefix code for C in which codewords for x and y have
same length and differ only in the last bit.

Proof: Let T be a tree representing an arbitrary optimal prefix code,
and let a and b be siblings of maximum depth in T

Assume, w.l.o.g., that x.freq ≤ y.freq and a.freq ≤ b.freq

Since x and y are the two least frequent nodes, we get
x.freq ≤ a.freq and y.freq ≤ b.freq

Convert T to T ′ by exchanging a and x, then convert to T ′′ by
exchanging b and y

In T ′′, x and y are siblings of maximum depth

20 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Optimal Coding Has Greedy Choice Property (2)

21 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T ′ is B(T)−B(T ′):

=
∑
c∈C

c.freq · dT (c)−
∑
c∈C

c.freq · dT ′(c)

= x.freq · dT (x) + a.freq · dT (a)− x.freq · dT ′(x)− a.freq · dT ′(a)

= x.freq · dT (x) + a.freq · dT (a)− x.freq · dT (a)− x.freq · dT (x)
= (a.freq − x.freq)(dT (a)− dT (x)) ≥ 0

since a.freq ≥ x.freq and dT (a) ≥ dT (x)

Similarly, B(T ′)−B(T ′′) ≥ 0, so B(T ′′) ≤ B(T), so T ′′ is optimal

22 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Optimal Coding Has Optimal Substructure Property

Lemma: Let C be an alphabet in which symbol c ∈ C has frequency
c.freq and let x, y ∈ C have lowest frequencies. Let
C ′ = C \ {x, y} ∪ {z} and z.freq = x.freq + y.freq. Let T ′ be any
tree representing an optimal prefix code for C ′. Then T , which is T ′

with leaf z replaced by internal node with children x and y,
represents an optimal prefix code for C

Proof: Since dT (x) = dT (y) = dT ′(z) + 1,

x.freq · dT (x) + y.freq · dT (y) = (x.freq + y.freq)(dT ′(z) + 1)

= z.freq · dT ′(z) + (x.freq + y.freq)

Also, since dT (c) = dT ′(c) for all c ∈ C \ {x, y},
B(T) = B(T ′) + x.freq + y.freq and
B(T ′) = B(T)− x.freq − y.freq

23 / 24

CSCE423/823

Introduction

Activity
Selection

Greedy vs
Dynamic
Programming

Huffman
Coding

Algorihtm

Greedy Choice
Property

Optimal
Substructure
Property

Optimal Coding Has Optimal Substructure Property (2)

Assume that T is not optimal, i.e. B(T ′′) < B(T) for some T ′′

Assume w.l.o.g. (based on previous lemma) that x and y are siblings
in T ′′

In T ′′, replace x, y, and their parent with z such that
z.freq = x.freq + y.freq, to get T ′′′:

B(T ′′′) = B(T ′′)− x.freq − y.freq (from prev. slide)

< B(T)− x.freq − y.freq (from T suboptimal assumption)

= B(T ′) (from prev. slide)

This contradicts assumption that T ′ is optimal for C ′

24 / 24

	Introduction
	Activity Selection
	Optimal Substructure
	Recursive Definition
	Greedy Choice
	Recursive Algorithm
	Iterative Algorithm

	Greedy vs Dynamic Programming
	Huffman Coding
	Algorihtm
	Greedy Choice Property
	Optimal Substructure Property

