Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 10 — Greedy Algorithms (Chapter 16)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

Spring 2010

4 D > 4 D > 4 E > 4 E > E 9 Q C

Nebraska

Introduction

- Greedy methods: Another optimization technique
- Similar to dynamic programming in that we examine subproblems, exploiting optimial substructure property
- Key difference: In dynamic programming we considered all possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- Examples: Minimum spanning tree, single-source shortest paths

4 D > 4 D > 4 E > 4 E > E 994 P

Activity Selection

Nebraska

- Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room
- This is an example of the activity selection problem:
 - ullet Given: Set $S=\{a_1,a_2,\ldots,a_n\}$ of n proposed activities that wish to use a resource that can serve only one activity at a time
 - a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$
 - If a_i is scheduled to use the resource, it occupies it during the interval $[s_i,f_i)\Rightarrow$ can schedule both a_i and a_j iff $s_i\geq f_j$ or $s_j\geq f_i$ (if this happens, then we say that a_i and a_j are **compatible**)
 Goal is to find a largest subset $S'\subseteq S$ such that all activities in S' are
 - pairwise compatible
 - Assume that activities are sorted by finish time:

$$f_1 \leq f_2 \leq \cdots \leq f_n \text{ for all } f_1 \in \mathcal{F} \text{ for all } f_2 \in \mathcal{F} \text{ for a$$

4 D > 4 B > 4 E > 4 E > E 9 Q O

Nebraska

Activity Selection (2)

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	9 8 12	14	16

Sets of mutually compatible activities: $\{a_3,a_9,a_{11}\}$, $\{a_1,a_4,a_8,a_{11}\}$, $\{a_2, a_4, a_9, a_{11}\}$

Nebraska

Optimal Substructure of Activity Selection

- ullet Let S_{ij} be set of activities that start after a_i finishes and that finish before a_j starts
- ullet Let $A_{ij}\subseteq S_{ij}$ be a largest set of activities that are mutually compatible
- ullet If activity $a_k \in A_{ij}$, then we get two subproblems: S_{ik} and S_{kj}
- If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - ullet If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into ${\cal A}_{ij}$ and get a better solution
- ullet Thus if we pick an activity a_k to be in an optimal solution and then solve the subproblems, our optimal solution is $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, which is of size $|A_{ik}| + |A_{kj}| + 1$

Recursive Definition

 \bullet Let c[i,j] be the size of an optimal solution to S_{ij}

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{array} \right.$$

- ullet We try all a_k since we don't know which one is the best choice...
- ...or do we?

4 D > 4 B > 4 B > 4 B > 9 Q C

Nebraska

Greedy Choice

- ullet What if, instead of trying all activities a_k , we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- This is a greedy choice in that it maximizes the amount of time left over to schedule other activities
- Let $S_k = \{a_i \in S : s_i \geq f_k\}$ be set of activities that start after a_k
- ullet If we greedily choose a_1 first (with earliest finish time), then S_1 is the only subproblem to solve

4 D > 4 B > 4 B > 4 B > 3 8 9 9 9

Nebraska

Greedy Choice (2)

- activity in S_k with earliest finish time. Then a_m is in some maximum-size subset of mutually compatible activities of S_k ullet Let A_k be an optimal solution to S_k and let a_j have earliest finish
 - time of all in A_k

• Theorem: Consider any nonempty subproblem S_k and let a_m be an

- $\bullet \ \ \text{If} \ a_j = a_m \text{, we're done} \\$
- ullet If $a_j
 eq a_m$, then define $A_k' = A_k \setminus \{a_j\} \cup \{a_m\}$
- ullet Activities in A' are mutually compatible since those in A are mutually compatible and $f_m \leq f_j$
- \bullet Since $|A_k'|=|A_k|,$ we get that A_k' is a maximum-size subset of mutually compatible activities of \mathcal{S}_k that includes \mathcal{a}_m
- What this means is that there is an optimal solution that uses the greedy choice

4 D > 4 D > 4 E > 4 E > E 994 P

Nebraska

Recursive Algorithm

1 m = k + 1

2 while $m \leq n$ and s[m] < f[k] do

m = m + 13

4 end

5 if $m \le n$ then

return $\{a_m\} \cup \text{Recursive-Activity-}$ Selector(s, f, m, n)

7 else return ∅

Algorithm 1. $\mathsf{Selector}(s, f, k, n)$

Recursive-Activity-

Nebraska

Recursive Algorithm (2)

Nebraska

Iterative Algorithm

- 1 $A = \{a_1\}$ 2 k = 13 for $m=2\ to\ n$ do
- if $s[m] \geq f[k]$ then 4
- 5 $A = A \cup \{a_m\}$
- k = m
- 7 end
- 8 return A

What is the time complexity? What would it have been if we'd approached this as a DP problem? 4 D F 4 D F 4 E F 4 E F E 990

Nebraska

Greedy vs Dynamic Programming

• When can we get away with a greedy algorithm instead of DP?

- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - \bullet There are n items that a thief can steal, item i weighing w_i pounds and worth $\ensuremath{v_i}$ dollars
 - \bullet The thief's goal is to steal a set of items weighing at most W pounds and maximizes total value
 - ullet In the 0-1 knapsack problem, each item must be taken in its entirety (e.g. gold bars)
 - In the fractional knapsack problem, the thief can take part of an item and get a proportional amount of its value (e.g. gold dust)

4 D > 4 B > 4 E > 4 E > E 9940

Nebraska

Greedy vs Dynamic Programming (2)

- There's a greedy algorithm for the fractional knapsack problem

 - \bullet Sort the items by v_i/w_i and choose the items in descending order \bullet Has greedy choice property, since any optimal solution lacking the greedy choice can have the greedy choice swapped in
 - Works because one can always completely fill the knapsack at the last
- \bullet Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is pseudopolynomial
 - Decision problem is NP-complete

4 D > 4 B > 4 E > 4 E > E 994 C

Nebraska

Greedy vs Dynamic Programming (3)

Problem instance

0-1 (greedy is suboptimal)

Fractional

4 D > 4 D > 4 E > 4 E > E 9940

Nebraska

Huffman Coding

- Interested in encoding a file of symbols from some alphabet
- Want to minimize the size of the file, based on the frequencies of the symbols
- \bullet A fixed-length code uses $\lceil \log_2 n \rceil$ bits per symbol, where n is the size of the alphabet C
- A variable-length code uses fewer bits for more frequent symbols

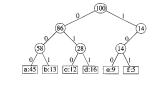
	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

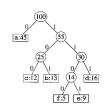
Fixed-length code uses 300k bits, variable-length uses 224k bits

Nebraska

Huffman Coding (2)

Can represent any encoding as a binary tree





If c.freq = frequency of codeword and $d_T(c) =$ depth, cost of tree T is

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

Nebraska

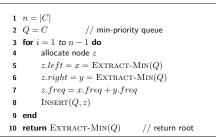
Algorihtm for Optimal Codes

- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its
- ullet Given alphabet C (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- Frequency of new subtree is the sum of the frequencies of its children
- Then add the subtree back into the set for future consideration

40 × 40 × 42 × 42 × 2 990

Nebraska

Algorihtm for Optimal Codes (2)



Algorithm 3: $\mathsf{Huffman}(C)$

Time complexity: n-1 iterations, $O(\log n)$ time per iteration, total $O(n\log n)$

Nebraska

Algorithm for Optimal Codes (3)

- (a) £:5 e:9 c:12 b:13 d:16 a:45
- d:16 a:45 f:5 e:9
- f:5 e:9
- (e) a:45

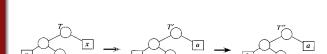
Nebraska

Optimal Coding Has Greedy Choice Property

- Lemma: Let C be an alphabet in which symbol $c \in C$ has frequency c.freq and let $x,y \in C$ have lowest frequencies. Then there exists an optimal prefix code for ${\cal C}$ in which codewords for x and y have same length and differ only in the last bit.
- ullet Proof: Let T be a tree representing an arbitrary optimal prefix code, and let a and b be siblings of maximum depth in T
- Assume, w.l.o.g., that $x.freq \leq y.freq$ and $a.freq \leq b.freq$
- ullet Since x and y are the two least frequent nodes, we get $x.freq \leq a.freq \text{ and } y.freq \leq b.freq$
- \bullet Convert T to T' by exchanging a and x, then convert to T'' by exchanging \boldsymbol{b} and \boldsymbol{y}
- In T'', x and y are siblings of maximum depth

Nebraska

Optimal Coding Has Greedy Choice Property (2)



Nebraska

Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T' is B(T) - B(T'):

 $= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$

 $= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$ $= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - x.freq \cdot d_T(x)$

 $= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$

since $a.freq \ge x.freq$ and $d_T(a) \ge d_T(x)$

Similarly, $B(T') - B(T'') \ge 0$, so $B(T'') \le B(T)$, so T'' is optimal

Nebraska

Optimal Coding Has Optimal Substructure Property

• Lemma: Let C be an alphabet in which symbol $c \in C$ has frequency c.freq and let $x,y\in C$ have lowest frequencies. Let $C'=C\setminus\{x,y\}\cup\{z\}$ and z.freq=x.freq+y.freq. Let T' be any tree representing an optimal prefix code for C'. Then T, which is T'with leaf z replaced by internal node with children x and y, represents an optimal prefix code for ${\cal C}$ • **Proof:** Since $d_T(x) = d_T(y) = d_{T'}(z) + 1$,

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = (x.freq + y.freq)(d_{T'}(z) + 1)$$
$$= z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$$

Also, since $d_T(c) = d_{T'}(c)$ for all $c \in C \setminus \{x, y\}$, $B(T) = B(T^\prime) + x.freq + y.freq \ \mathrm{and} \ \\$

B(T') = B(T) - x.freq - y.freq

Nebraska

Optimal Coding Has Optimal Substructure Property (2)

- Assume that T is not optimal, i.e. B(T'') < B(T) for some T''
- ullet Assume w.l.o.g. (based on previous lemma) that x and y are siblings in T''
- In T'', replace x, y, and their parent with z such that z.freq = x.freq + y.freq, to get T'''

B(T''') = B(T'') - x.freq - y.freq (from prev. slide) < B(T) - x.freq - y.freq(from T suboptimal assumption) (from prev. slide)

ullet This contradicts assumption that T' is optimal for C'

4 m > 4 m >