

Efficiency of Minimum(A)

 \Rightarrow Total n-1 comparisons

 $\mathsf{need} \ \mathsf{at} \ \mathsf{least} \ n-1 \ \mathsf{comparisons}$

• Can we do better?

Nebraska

4D > 4B > 4B > 4B > B 990

 \bullet Loop is executed n-1 times, each with one comparison

 \bullet Lower Bound: Any algorithm finding minimum of n elements will

 \bullet Proof of this comes from fact that no element of A can be considered

for elimination as the minimum until it's been compared at least once

```
Nebraska
```

Simultaneous Minimum and Maximum

```
1 large = max(A[1], A[2])
2 small = min(A[1], A[2])
3 for i=2 to \lfloor n/2 \rfloor do
        large = \max(large, \max(A[2i-1], A[2i]))
4
5
        small = \min(small, \min(A[2i-1], A[2i]))
6 end
7 if n is odd then
        large = \max(large, A[n])
        small = \min(small, A[n])
9
10 end
11 return (large, small)
```

Algorithm 2: MinAndMax(A, n)

4 D > 4 B > 4 E > 4 E > E + 9 Q C

Nebraska

Explanation of MinAndMax

- Idea: For each pair of values examined in the loop, to compare them
- ullet For each such pair, compare the smaller one to small and the larger one to large
- $\bullet \ \, \mathsf{Example:} \ \, A = [8, 5, 3, 10, 4, 12, 6]$

4 D > 4 D > 4 E > 4 E > E 994 P

Efficiency of MinAndMax

Nebraska

• How many comparisons does MinAndMax make?

- Initialization on Lines 1 and 2 requires only one comparison
- Each iteration through the loop requires one comparison between A[2i-1] and A[2i] and then one comparison to each of large and small, for a total of three
- Lines 8 and 9 require one comparison each
- Total is at most $1+3(\lfloor n/2\rfloor-1)+2\leq 3\lfloor n/2\rfloor$, which is better than 2n-3 from finding minimum and maximum separately

• Idea: Somehow discard a constant fraction of the current array after

Nebraska

Selection of the ith Smallest Value

ullet Now to the general problem: Given A and i, return the ith smallest $\mathsf{value}\;\mathsf{in}\;A$

- Obvious solution is sort and return ith element
- Time complexity is $\Theta(n \log n)$
- Can we do better?

Nebraska

Selection of the *i*th Smallest Value (2)

• New algorithm: Divide and conquer strategy

• If we do that, we'll get a better time complexity

 More on this later • Which fraction do we discard?

spending only linear time

Nebraska

Procedure Select

```
return A[p]
  4 q = \mathsf{Partition}(A, p, r) \; / / \; \mathsf{Like} \; \mathsf{Partition} \; \mathsf{in} \; \mathsf{Quicksort}
  \mathbf{5} \quad k = q - p + 1 \ // \ \mathsf{Size} \ \mathsf{of} \ A[p \cdots q]
 6 if i == k then
                    {\bf return}\ A[q]\ //\ {\sf Pivot}\ {\sf value} is the answer
 8 end
   9 else if i < k then
10
                    \mathbf{return} \,\, \mathsf{Select}(A,p,q-1,i) \,\, // \,\, \mathsf{Answer} \,\, \mathsf{is} \,\, \mathsf{in} \,\, \mathsf{left} \,\, \mathsf{subarray}
11 end
12 else
13
                   \mathbf{return} \,\, \mathsf{Select}(A,q+1,r,i-k) \,\, // \,\, \mathsf{Answer} \,\, \mathsf{is} \,\, \mathsf{in} \,\, \mathsf{right} \,\, \mathsf{subarray}
```

Algorithm 3: Select(A, p, r, i), which returns ith smallest element from $A[p \cdots r]$

4D > 4B > 4B > 4B > B 990

40 × 40 × 42 × 42 × 2 990

Nebraska

What is Select Doing?

• Like in Quicksort, Select first calls Partition, which chooses a pivot $\textbf{element} \ q \text{, then reorders} \ A \ \text{to put all elements} < A[q] \ \text{to the left of}$ A[q] and all elements >A[q] to the right of A[q]

- \bullet E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is A' = [1, 4, 2, 3, 5, 7, 8, 6]
- ullet If A[q] is the element we seek, then return it
- \bullet If sought element is in left subarray, then recursively search it, and ignore right subarray
- If sought element is in right subarray, then recursively search it, and ignore left subarray

4 D > 4 D > 4 E > 4 E > E 9900

Nebraska

Partitioning the Array

 $\mathbf{1} \quad x = \mathsf{ChoosePivotElement}\big(A, p, r\big) \; // \; \mathsf{Returns} \; \mathsf{index} \; \mathsf{of} \; \mathsf{pivot}$ $\mathbf{2} \ \ \text{exchange} \ A[x] \ \text{with} \ A[r]$ 3 i = p - 13 i = p - 14 for j = p to r - 1 do 5 if $A[j] \le A[r]$ then 6 i = i + 1exchange A[i] with A[j]8 9 end ${\bf 10} \ \ {\rm exchange} \ A[i+1] \ {\rm with} \ A[r]$ 11 return i+1

Algorithm 4: Partition(A, p, r), which chooses a pivot element and partitions $A[p\cdots r]$ around it

4 D > 4 D > 4 E > 4 E > E 994 P

Nebraska

Partitioning the Array: Example (Fig 7.1)

ρ_J 2 8 7 1 3 5 6 4 2 8 7 1 3 5 6 4 28713564 2 8 7 1 3 5 6 4

4D > 4B > 4B > 4B > B 990

Nebraska

Choosing a Pivot Element

• Choice of pivot element is critical to low time complexity

Why?

• What is the best choice of pivot element to partition $A[p\cdots r]$?

Nebraska

Choosing a Pivot Element (2)

- Want to pivot on an element that it as close as possible to being the
- Of course, we don't know what that is
- Will do median of medians approach to select pivot element

Nebraska

Median of Medians

ullet Given (sub)array A of n elements, partition A into $m=\lfloor n/5 \rfloor$ groups of 5 elements each, and at most one other group with the remaining $n \mod 5$ elements

 \bullet Make an array $A'=[x_1,x_2,\ldots,x_{m+1}],$ where x_i is median of group \emph{i} , found by sorting (in constant time) group \emph{i}

• Call Select $(A', 1, m+1, \lfloor (m+1)/2 \rfloor)$ and use the returned element as the pivot

4 m > 4 m >

Nebraska

Example

Split into teams, and work this example on the board: Find the 4th Show results for each step of Select, Partition, and ChoosePivotElement

smallest element of A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]

4 D > 4 B > 4 B > 4 B > 3 8 9 9 9

(E) E 990

Nebraska

Time Complexity

- Key to time complexity analysis is lower bounding the fraction of elemements discarded at each recursive call to Select
- On next slide, medians and median (x) of medians are marked, arrows indicate what is guaranteed to be greater than what
- ullet Since x is less than at least half of the other medians (ignoring group with < 5 elements and x's group) and each of those medians is less than 2 elements, we get that the number of elements \boldsymbol{x} is less than is

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right)\geq\frac{3n}{10}-6\geq n/4 \qquad \text{(if } n\geq 120\text{)}$$

- \bullet Similar argument shows that at least $3n/10-6 \geq n/4$ elements are
- \bullet Thus, if $n \geq 120,$ each recursive call to Select is on at most 3n/4elements 4 m + 4 m + 4 m + 4 m + 3 m + 9 c c

Nebraska Time Complexity (2)

Nebraska

Time Complexity (3)

- Now can develop a recurrence describing Select's time complexity
- \bullet Let T(n) represent total time for Select to run on input of size n
- ullet Choosing a pivot element takes time O(n) to split into size-5 groups and time T(n/5) to recursively find the median of medians
- ullet Once pivot element chosen, partitioning n elements takes O(n) time
- Recursive call to Select takes time at most T(3n/4)
- Thus we get

$$T(n) \le T(n/5) + T(3n/4) + O(n)$$

- Can express as $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha = 1/5$ and $\beta = 3/4$
- \bullet Theorem: For recurrences of the form $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha + \beta < 1$. T(n) = O(n)
- Thus Select has time complexity O(n)

Nebraska

Proof of Theorem

Top T(n) takes O(n) time (= cn for some constant c). Then calls to $T(\alpha n)$ and $T(\beta n)$, which take a total of $(\alpha + \beta)cn$ time, and so on.

Summing these infinitely yields (since $\alpha+\beta<1)$

ng these infinitely yields (since
$$\alpha+\beta<1$$
)
$$cn(1+(\alpha+\beta)+(\alpha+\beta)^2+\cdots)=\frac{cn}{1-(\alpha+\beta)}=c'n=O(n)$$

Nebraska

Master Method

- Another useful tool for analyzing recurrences
- Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined as T(n) = aT(n/b) + f(n). Then T(n) is bounded as follows.

 - If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$ If $f(n) = \Omega(n^{\log_b a} + \epsilon)$ for constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for
 - constant c < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$
- ullet E.g. for Select, can apply theorem on T(n) < 2T(3n/4) + O(n)(note the slack introduced) with $a=2,\ b=4/3,\ \epsilon=1.4$ and get $T(n) = O\left(n^{\log_{4/3} 2}\right) = O\left(n^{2.41}\right)$
- ⇒ Not as tight for this recurrence

4 m > 4 m >