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W2eEed Finding Minimum

Lincoln

Introduction
— 1 small = A[1]
Finding
G 2 fori=2ton do
Selection of 3 if small > A[i] then
Arbitrary R
Order Satisic 4 small = Ali]
5 end
6 end
7 return small

Algorithm 1: Minimum(A4,n)

=1 Correctness of Minimum(A)

Introduction

Finding

Minimum and @ Observe that the algorithm always maintains the invariant that at
the end of each loop iteration, small holds the minimum of A[1-- -]

Selection of
Arbitrar 1 1 1

G o Easily shown by induction

@ Correctness follows by observing that i == n before return

statement

Neveel |ntroduction
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o Given an array A of n distinct numbers, the ith order statistic of A
Introduction is its ith smallest element
Finding e i =1 = minimum
Minimum and e i =mn = maximum
o of e i=|[(n+1)/2] = (lower) median
e et e Eg. if A=8,5,3,10,4,12,6] then min = 3, max = 12, median =
6, 3rd order stat = 5
@ Problem: Given array A of n elements and a number ¢ € {1,...,n},
find the ith order statistic of A
@ There is an obvious solution to this problem. What is it? What is its
time complexity?
e Can we do better?

el Efficiency of Minimum(A)
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Introduction

Finding @ Loop is executed n — 1 times, each with one comparison

Minimum and .

Maximum = Total n — 1 comparisons

Selection of o Can we do better?

ifrl)nmr\.‘ - ) . . . .
CdegStatistic o Lower Bound: Any algorithm finding minimum of n elements will

need at least n — 1 comparisons
o Proof of this comes from fact that no element of A can be considered
for elimination as the minimum until it's been compared at least once

Simultaneous Minimum and Maximum

Lincoln

Introduction

Finding

Minimum and . . . . P .
Maximum @ Given array A with n elements, find both its minimum and maximum
e @ What is the obvious algorithm? What is its (non-asymptotic) time

Order Statistic Complexity?

o Can we do better?



WEeet=Y Simultaneous Minimum and Maximum
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1 large = max(A[1], A[2])
Introduction 2 small = min(A[1], A[2])
e B, 3 for i =2 to|n/2] do
Maximum 4 large = max(large, max(A[2i — 1], A[2i]))
palecionly 5 small = min(small, min(A[2i — 1], A[2i]))
Order Statistic 6 e"d
7 if n is odd then
8 large = max(large, A[n])
9 small = min(small, A[n])
10 end
11 return (large, small)

Algorithm 2: MinAndMax(A4,n)

WEeet=Y Efficiency of MinAndMax
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Introduction

@ How many comparisons does MinAndMax make?
Finding . . . . .
Minimum and @ Initialization on Lines 1 and 2 requires only one comparison
Maximum

@ Each iteration through the loop requires one comparison between

Selection of

Arbitrary e A[2i — 1] and A[2:] and then one comparison to each of large and
small, for a total of three

@ Lines 8 and 9 require one comparison each

Total is at most 1+ 3(|n/2] — 1) +2 < 3|n/2], which is better than
2n — 3 from finding minimum and maximum separately

Selection of the ith Smallest Value (2)
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Introduction
Fhiemen o New algorithm: Divide and conquer strategy
Maximum . .
) ; @ |dea: Somehow discard a constant fraction of the current array after
Selection of . . .
Priftirmsy spending only linear time
Order Statistic , . .
Algorithm o If we do that, we'll get a better time complexity

Overview o More on this later

@ Which fraction do we discard?

Nebtidka Explanation of MinAndMax
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Introduction
Finding . . .
i i o |dea: For each pair of values examined in the loop, to compare them
aximum
) directly
Selection of
e et @ For each such pair, compare the smaller one to small and the larger

one to large
o Example: A =8,5,3,10,4,12,6]

Selection of the 7th Smallest Value
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Introduction

Finding . . .

M i @ Now to the general problem: Given A and i, return the ith smallest
) value in A

Selection of

O Spatistic @ Obvious solution is sort and return ith element

Algorithm . o

Overvien o Time complexity is ©(nlogn)

o Can we do better?

Procedure Select

Lincoln

1 if p==r then
2 return Alp]
Introduction 3 end
Finding 4 g = Partition(A, p,r) // Like Partition in Quicksort
Minimum and 5
Maximum 5 k=q—p+1//Sizeof Alp---q]
Selection of 6 if i ==F then
v 7 return Alg] // Pivot value is the answer
8 end
et 9 else if i <k then
Pseudocods 10 return Select(A,p,q — 1,i) // Answer is in left subarray
11 end
12 else
13 return Select(A, g+ 1,7,i — k) // Answer is in right subarray
14 end

Algorithm 3: Select(A, p, ), which returns ith smallest element from

Alp---7]



WEeet=Y \What is Select Doing?
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o Like in Quicksort, Select first calls Partition, which chooses a pivot

inioduction element ¢, then reorders A to put all elements < A[g] to the left of
Miimm and Alg] and all elements > A[q] to the right of A[q]
Mizi

o Eg. if A=[1,7,5,4,2,8,6,3] and pivot element is 5, then result is
Order Satisc A'=[1,4,2,3,5,7,8,6]

o If Alg] is the element we seek, then return it

If sought element is in left subarray, then recursively search it, and
ignore right subarray

o If sought element is in right subarray, then recursively search it, and
ignore left subarray
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Nebiaska Partitioning the Array: Example (Fig 7.1)

Introduction |.|a dOBE (Ib
A|t[ 3]s .|»
Setection of ':|,|1| ; ,|Q

Arbitrar
Oty Gt e i ’ ] . e
Bl BEnk Compare each element A[j] to = (= 4) and swap with A[i] if A[j] <z

Algorithm r L '_rl d I'
'seudocode 2 1 3RS 6)4
i :|| 1 s|;|:
i 1 :~|l 1|5 6"‘

5

ebiaska Choosing a Pivot Element (2)

Introduction

Finding

Minimum and . . . .

Maximum @ Want to pivot on an element that it as close as possible to being the
Selection of median

Arbitrary

O Siattic @ Of course, we don't know what that is

Algorithm @ Will do median of medians approach to select pivot element

Pseudocode

Wleeti Partitioning the Array

Lincoln
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x = ChoosePivotElement(A, p,r) // Returns index of pivot
exchange Afz] with Afr]

Introduction

Finding
Minimum and
Maximum

i=p-—1
for j=ptor—1do
if A[j] < A[r] then
i=i+1
exchange Ali] with A[j]
end
end
exchange A[i + 1] with Ar]
return i + 1

—
HO©L®ONOUE WN -

-

Algorithm 4: Partition(A, p,r), which chooses a pivot element and

partitions A[p---r] around it

Choosing a Pivot Element

Lincoln
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Introduction
Finding
Minimum and
Meximum @ Choice of pivot element is critical to low time complexity
Selection of
o Why?
@ What is the best choice of pivot element to partition A[p---r]?
Algorithm

Pseudocode

Median of Medians
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Introduction

@ Given (sub)array A of n elements, partition A into m = |n/5]

Finding
VA groups of 5 elements each, and at most one other group with the
Selection of remaining n mod 5 elements
Arbitrary A .
@ Make an array A’ = [z1,2,...,Tm+1], where x; is median of group
el i, found by sorting (in constant time) group @
T

Pseudocode

o Call Select(A’,1,m + 1, |[(m + 1)/2]) and use the returned element
as the pivot
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o Key to time complexity analysis is lower bounding the fraction of
elemements discarded at each recursive call to Select

Introduction Introduction @ On next slide, medians and median (z) of medians are marked,
Finding Finding arrows indicate what is guaranteed to be greater than what
Minimum and Minimum and . . . . .
Maximum Split into teams, and work this example on the board: Find the 4th Maximum @ Since x is less than at least half of the other medians (ignoring group
S smallest element of A = [4,9,12,17,6,5,21,14,8,11,13,29, 3] St with < 5 elements and z's group) and each of those medians is less
Order Statistic Order Statistic than 2 elements, we get that the number of elements x is less than is
Show results for each step of Select, Partition, and ChoosePivotElement ; at least
1n 3n
3([5[5]|-2) 2506204 (fnz120
GQ 5 =15 6=n/ (ifn > 120)
@ Similar argument shows that at least 3n/10 — 6 > n/4 elements are
less than z
@ Thus, if n > 120, each recursive call to Select is on at most 3n/4
elements

WcERY Time Complexity (2) 2ed Time Complexity (3)
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Now can develop a recurrence describing Select’s time complexity

Let T'(n) represent total time for Select to run on input of size n

Introduction Introduction

Choosing a pivot element takes time O(n) to split into size-5 groups
M and Mo and time T'(n/5) to recursively find the median of medians
e i Once pivot element chosen, partitioning n elements takes O(n) time

Selection of ; 3 “a) Selection of
Arbitrary = 5 - Arbitrary

Recursive call to Select takes time at most 7'(3n/4)

Order Statistic c . £ 4 Order Sta
o Thus we get
. : : o T(n) <T(n/5) +T(3n/4)+ O(n)

Can express as T'(an) + T(An) + O(n) for a = 1/5 and 3 = 3/4
Theorem: For recurrences of the form T'(an) + T'(8n) + O(n) for
a+3<1, T(n)=0(n)

Thus Select has time complexity O(n)

Proof of Theorem Master Method

Lincoln
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Top T'(n) takes O(n) time (= cn for some constant ¢). Then calls to T'(an) and

T(8n), which take a total of (a + §)cn time, and so on. @ Another useful tool for analyzing recurrences
s N cn s o Theorem: Let a > 1 and b > 1 be constants, let f(n) be a function,
Finding Finding and let T'(n) be defined as T'(n) = aT'(n/b) + f(n). Then T'(n) is
Minmun and e bounded as follows.
@ 5 e © If f(n) = O(n'“% =) for constant ¢ > 0, then 7(n) = ©(n'*%)
é::::as'(a:isti: /\ /\ g'rl;':z’; . Q If f(n) = @(nl"g”“), then T'(n) = @(nl"gh" logn)
Aigor h @ If f(n) = Q(n'os» @+<) for constant e > 0, and if af(n/b) < cf(n) for
: aan agn afn BB n (+pyen constant ¢ < 1 and sufficiently large n, then T'(n) = O(f(n))
: . B o o E.g. for Select, can apply theorem on T'(n) < 27'(3n/4) + O(n)
o o S (note the slack introduced) with a =2, b=4/3, ¢ = 1.4 and get
_ log 5 2) _ 241
Summing these infinitely yields (since a + 8 < 1) T(n)=0 (n % (n )
cn = Not as tight for this recurrence

cn(1+(n+ﬁ)+(1‘z+ﬂ)2+---):m:c’n:O(n)
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