Nelsisck

Lincoln

CSCE4: 3
Computer Science & Engineering 423/823
pseducten Design and Analysis of Algorithms
Finding
mum and
mem Lecture 01 — Medians and Order Statistics (Chapter 9)
Rt
Order Statistic
Stephen Scott
(Adapted from Vinodchandran N. Variyam)
Spring 2010
1/24

W2eEed Finding Minimum

Lincoln

Introduction
— 1 small = A[1]
Finding
G 2 fori=2ton do
Selection of 3 if small > A[i] then
Arbitrary R
Order Satisic 4 small = Ali]
5 end
6 end
7 return small

Algorithm 1: Minimum(A4,n)

=1 Correctness of Minimum(A)

Introduction

Finding

Minimum and @ Observe that the algorithm always maintains the invariant that at
the end of each loop iteration, small holds the minimum of A[1-- -]

Selection of
Arbitrar 1 1 1

G o Easily shown by induction

@ Correctness follows by observing that i == n before return

statement

Neveel |ntroduction

Lincoln

CSCE423/823
o Given an array A of n distinct numbers, the ith order statistic of A
Introduction is its ith smallest element
Finding e i =1 = minimum
Minimum and e i =mn = maximum
o of e i=|[(n+1)/2] = (lower) median
e et e Eg. if A=8,5,3,10,4,12,6] then min = 3, max = 12, median =
6, 3rd order stat = 5
@ Problem: Given array A of n elements and a number ¢ € {1,...,n},
find the ith order statistic of A
@ There is an obvious solution to this problem. What is it? What is its
time complexity?
e Can we do better?

el Efficiency of Minimum(A)

CSCE423/823

Introduction

Finding @ Loop is executed n — 1 times, each with one comparison

Minimum and .

Maximum = Total n — 1 comparisons

Selection of o Can we do better?

ifrl)nmr\.‘ -)
CdegStatistic o Lower Bound: Any algorithm finding minimum of n elements will

need at least n — 1 comparisons
o Proof of this comes from fact that no element of A can be considered
for elimination as the minimum until it's been compared at least once

Simultaneous Minimum and Maximum

Lincoln

Introduction

Finding

Minimum and P .
Maximum @ Given array A with n elements, find both its minimum and maximum
e @ What is the obvious algorithm? What is its (non-asymptotic) time

Order Statistic Complexity?

o Can we do better?

WEeet=Y Simultaneous Minimum and Maximum

Lincoln

1 large = max(A[1], A[2])
Introduction 2 small = min(A[1], A[2])
e B, 3 for i =2 to|n/2] do
Maximum 4 large = max(large, max(A[2i — 1], A[2i]))
palecionly 5 small = min(small, min(A[2i — 1], A[2i]))
Order Statistic 6 e"d
7 if n is odd then
8 large = max(large, A[n])
9 small = min(small, A[n])
10 end
11 return (large, small)

Algorithm 2: MinAndMax(A4,n)

WEeet=Y Efficiency of MinAndMax

Lincoln

Introduction

@ How many comparisons does MinAndMax make?
Finding
Minimum and @ Initialization on Lines 1 and 2 requires only one comparison
Maximum

@ Each iteration through the loop requires one comparison between

Selection of

Arbitrary e A[2i — 1] and A[2:] and then one comparison to each of large and
small, for a total of three

@ Lines 8 and 9 require one comparison each

Total is at most 1+ 3(|n/2] — 1) +2 < 3|n/2], which is better than
2n — 3 from finding minimum and maximum separately

Selection of the ith Smallest Value (2)

Lincoln

Introduction
Fhiemen o New algorithm: Divide and conquer strategy
Maximum . .
) ; @ |dea: Somehow discard a constant fraction of the current array after
Selection of . . .
Priftirmsy spending only linear time
Order Statistic , . .
Algorithm o If we do that, we'll get a better time complexity

Overview o More on this later

@ Which fraction do we discard?

Nebtidka Explanation of MinAndMax

Lincoln

CSCE423/823

Introduction
Finding . . .
i i o |dea: For each pair of values examined in the loop, to compare them
aximum
) directly
Selection of
e et @ For each such pair, compare the smaller one to small and the larger

one to large
o Example: A =8,5,3,10,4,12,6]

Selection of the 7th Smallest Value

Lincoln

CSCE423/823

Introduction

Finding . . .

M i @ Now to the general problem: Given A and i, return the ith smallest
) value in A

Selection of

O Spatistic @ Obvious solution is sort and return ith element

Algorithm . o

Overvien o Time complexity is ©(nlogn)

o Can we do better?

Procedure Select

Lincoln

1 if p==r then
2 return Alp]
Introduction 3 end
Finding 4 g = Partition(A, p,r) // Like Partition in Quicksort
Minimum and 5
Maximum 5 k=q—p+1//Sizeof Alp---q]
Selection of 6 if i ==F then
v 7 return Alg] // Pivot value is the answer
8 end
et 9 else if i <k then
Pseudocods 10 return Select(A,p,q — 1,i) // Answer is in left subarray
11 end
12 else
13 return Select(A, g+ 1,7,i — k) // Answer is in right subarray
14 end

Algorithm 3: Select(A, p,), which returns ith smallest element from

Alp---7]

WEeet=Y \What is Select Doing?

Lincoln

o Like in Quicksort, Select first calls Partition, which chooses a pivot

inioduction element ¢, then reorders A to put all elements < A[g] to the left of
Miimm and Alg] and all elements > A[q] to the right of A[q]
Mizi

o Eg. if A=[1,7,5,4,2,8,6,3] and pivot element is 5, then result is
Order Satisc A'=[1,4,2,3,5,7,8,6]

o If Alg] is the element we seek, then return it

If sought element is in left subarray, then recursively search it, and
ignore right subarray

o If sought element is in right subarray, then recursively search it, and
ignore left subarray

Lincoln

Nebiaska Partitioning the Array: Example (Fig 7.1)

Introduction |.|a dOBE (Ib
A|t[3]s .|»
Setection of ':|,|1| ; ,|Q

Arbitrar
Oty Gt e i ’] . e
Bl BEnk Compare each element A[j] to = (= 4) and swap with A[i] if A[j] <z

Algorithm r L '_rl d I'
'seudocode 2 1 3RS 6)4
i :|| 1 s|;|:
i 1 :~|l 1|5 6"‘

5

ebiaska Choosing a Pivot Element (2)

Introduction

Finding

Minimum and

Maximum @ Want to pivot on an element that it as close as possible to being the
Selection of median

Arbitrary

O Siattic @ Of course, we don't know what that is

Algorithm @ Will do median of medians approach to select pivot element

Pseudocode

Wleeti Partitioning the Array

Lincoln

CSCE423/823

x = ChoosePivotElement(A, p,r) // Returns index of pivot
exchange Afz] with Afr]

Introduction

Finding
Minimum and
Maximum

i=p-—1
for j=ptor—1do
if A[j] < A[r] then
i=i+1
exchange Ali] with A[j]
end
end
exchange A[i + 1] with Ar]
return i + 1

—
HO©L®ONOUE WN -

-

Algorithm 4: Partition(A, p,r), which chooses a pivot element and

partitions A[p---r] around it

Choosing a Pivot Element

Lincoln

CSCE423/823

Introduction
Finding
Minimum and
Meximum @ Choice of pivot element is critical to low time complexity
Selection of
o Why?
@ What is the best choice of pivot element to partition A[p---r]?
Algorithm

Pseudocode

Median of Medians

Lincoln

Introduction

@ Given (sub)array A of n elements, partition A into m = |n/5]

Finding
VA groups of 5 elements each, and at most one other group with the
Selection of remaining n mod 5 elements
Arbitrary A .
@ Make an array A’ = [z1,2,...,Tm+1], where x; is median of group
el i, found by sorting (in constant time) group @
T

Pseudocode

o Call Select(A’,1,m + 1, |[(m + 1)/2]) and use the returned element
as the pivot

Nebiaska [=NETTM 1S WLeetel Time Complexity

Lincoln

Lincoln

CSCE423/823

o Key to time complexity analysis is lower bounding the fraction of
elemements discarded at each recursive call to Select

Introduction Introduction @ On next slide, medians and median (z) of medians are marked,
Finding Finding arrows indicate what is guaranteed to be greater than what
Minimum and Minimum and
Maximum Split into teams, and work this example on the board: Find the 4th Maximum @ Since x is less than at least half of the other medians (ignoring group
S smallest element of A = [4,9,12,17,6,5,21,14,8,11,13,29, 3] St with < 5 elements and z's group) and each of those medians is less
Order Statistic Order Statistic than 2 elements, we get that the number of elements x is less than is
Show results for each step of Select, Partition, and ChoosePivotElement ; at least
1n 3n
3([5[5]|-2) 2506204 (fnz120
GQ 5 =15 6=n/ (ifn > 120)
@ Similar argument shows that at least 3n/10 — 6 > n/4 elements are
less than z
@ Thus, if n > 120, each recursive call to Select is on at most 3n/4
elements

WcERY Time Complexity (2) 2ed Time Complexity (3)

Lincoln

CSCE423/823

Now can develop a recurrence describing Select’s time complexity

Let T'(n) represent total time for Select to run on input of size n

Introduction Introduction

Choosing a pivot element takes time O(n) to split into size-5 groups
M and Mo and time T'(n/5) to recursively find the median of medians
e i Once pivot element chosen, partitioning n elements takes O(n) time

Selection of ; 3 “a) Selection of
Arbitrary = 5 - Arbitrary

Recursive call to Select takes time at most 7'(3n/4)

Order Statistic c . £ 4 Order Sta
o Thus we get
. : : o T(n) <T(n/5) +T(3n/4)+ O(n)

Can express as T'(an) + T(An) + O(n) for a = 1/5 and 3 = 3/4
Theorem: For recurrences of the form T'(an) + T'(8n) + O(n) for
a+3<1, T(n)=0(n)

Thus Select has time complexity O(n)

Proof of Theorem Master Method

Lincoln

Lincoln

Top T'(n) takes O(n) time (= cn for some constant ¢). Then calls to T'(an) and

T(8n), which take a total of (a + §)cn time, and so on. @ Another useful tool for analyzing recurrences
s N cn s o Theorem: Let a > 1 and b > 1 be constants, let f(n) be a function,
Finding Finding and let T'(n) be defined as T'(n) = aT'(n/b) + f(n). Then T'(n) is
Minmun and e bounded as follows.
@ 5 e © If f(n) = O(n'“% =) for constant ¢ > 0, then 7(n) = ©(n'*%)
é::::as'(a:isti: /\ /\ g'rl;':z’; . Q If f(n) = @(nl"g”“), then T'(n) = @(nl"gh" logn)
Aigor h @ If f(n) = Q(n'os» @+<) for constant e > 0, and if af(n/b) < cf(n) for
: aan agn afn BB n (+pyen constant ¢ < 1 and sufficiently large n, then T'(n) = O(f(n))
: . B o o E.g. for Select, can apply theorem on T'(n) < 27'(3n/4) + O(n)
o o S (note the slack introduced) with a =2, b=4/3, ¢ = 1.4 and get
_ log 5 2) _ 241
Summing these infinitely yields (since a + 8 < 1) T(n)=0 (n % (n)
cn = Not as tight for this recurrence

cn(1+(n+ﬁ)+(1‘z+ﬂ)2+---):m:c’n:O(n)

23/24 24/24

