Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 12 — Approximation Algorithms (Chapter 34)

Stephen Scott and and Vinodchandran N. Variyam

Meanwhile, back at Evil Corp

- Your boss wants you to do develop and implement an algorithm that
 - Takes as input a building's floor plan, with hallways and junctions indicated
 - Determines, in polynomial time, if one can place k omnidirectional cameras at junctions on a floor, such that each hallway is "covered" by at least one camera
 - (And if placement exists, output it)
- What should be your response? Why?
- Should you start updating your résumé?

4 D > 4 B > 4 E > 4 E > 990

Perhaps not all is lost

- ► This is, of course, our old friend (?) VERTEX-COVER where *E* = set of hallways and *V* = junctions
- ▶ What if you tried this:
 - 1. Let E' = E and $C = \emptyset$
 - 2. Choose an arbitrary edge $(u, v) \in E'$ and add u and v to the cover C
 - 3. Delete from E' all edges covered by u or v
 - 4. Repeat until $E' = \emptyset$

Notes and Questions

4□ ► 4♂ ► 4 ≧ ► 4 ≧ ► ≥ 90

4 D > 4 D > 4 E > 4 E > E 9 Q G

Example

Notes and Questions

Is C a vertex cover?

So what?

Yes, C is a vertex cover, but can we say more?

- Let C^* be an optimal (smallest) vertex cover of G, and $A \subseteq E'$ be edges chosen in line 2
- No two edges from A can be covered by the same vertex, so |C*| ≥ |A|
- Since we add two vertices per chosen edge, |C| = 2|A|
- $\Rightarrow |C| \leq 2|C^*|$, i.e., the algorithm's output will be at most twice optimal

Theorem: This algorithm is a polynomial-time **2-approximation algorithm**

4 ロト 4 団 ト 4 喜 ト 4 喜 ト - 喜 - り9 (で

Notes and Questions

4 D > 4 Ø > 4 E > 4 E > E 9 Q C

Approximation algorithms

An algorithm is a polynomial time $\rho(n)$ -approximation algorithm if it has a guaranteed approximation ratio of $\rho(n)$, where

$$ho(\textit{n}) \geq \max\left(rac{\textit{C}}{\textit{C}^*}, rac{\textit{C}^*}{\textit{C}}
ight) \;\; ,$$

where ${\it C}$ is the cost of the algorithm's solution and ${\it C}^*$ is the cost of an optimal solution

- ► Note that the ratio can depend on *n*, the size of the input (VERTEX-COVER algorithm had a constant ratio)
- Definition applies both to minimization and maximization problems

Notes and Questions

4 ID > 4 ID > 4 IE > 4 IE > IE 9 9 9 9

←□ ト ← 種 ト ← 種 ト ◆ 種 ト ● ■ か へ で 6/

Another Approximation Algorithm: TSP with Triangle Inequality

- Optimization version of the NP-complete problem TSP:
 Given a complete, undirected, weighted graph G, find a
 Hamiltonian cycle of minimum weight (cost)
- Approximation algorithm exists if the cost function c satisfies the triangle inequality: for all u, v, w ∈ V,

$$c(u,w) \leq c(u,v) + c(v,w)$$

(l.e., a direct edge from u to w is never worse than going through some intermediate vertex v)

▶ Holds if, e.g., c is Euclidean distance

Notes and Questions

The algorithm

Notes and Questions

- 1. Select arbitrary vertex $r \in V$ to be root
- 2. Compute MST *T* of *G* from *r* via Prim's algorithm
- 3. Let H be a list of vertices in the order of a preorder walk of
- 4. Return the Hamiltonian cycle H
- ▶ *G* is complete, so *H* is guaranteed to be a Hamiltonian

4 D > 4 B > 4 E > 4 E > E 990

4 D F 4 D F 4 E F 4 E F 9 Q C

Example

Notes and Questions

Approximation ratio

- ► Let H* be an optimal (smallest)
- Deleting any edge from H^* yields a spanning tree, so $c(T) \leq c(H^*)$, since T is an MST
- ▶ A **full walk** W of tree T is a listing of each vertex every time it's visited in preorder traversal, e.g., $W = \langle a, b, c, b, h, b, a, d, e, f, e, g, e, d, a \rangle$
- W traverses every edge in T twice: c(W) = 2c(T), so $c(W) \leq 2c(H^*)$
- ► Transform walk W into tour H by listing each vertex only when it first appears: $H = \langle a, b, c, h, d, e, f, g \rangle$
- ▶ Because of triangle inequality, can go directly from *u* to *w*, skipping v, without increasing cost, e.g., $c(f,g) \le c(f,e) + c(e,g)$, so $c(H) \le c(W) \le 2c(H^*)$

Theorem: This algorithm is poly-time **2-approximation** algorithm for TSP when triangle inequality holds

Notes and Questions

Why do we need the triangle inequality?

Theorem: If $P \neq NP$, then for any constant $\rho \geq 1$, there is no polynomial-time algorithm with approximation ratio ρ for general

- ▶ **Proof:** Reduce HAM-CYCLE to this problem
- ▶ Transform instance $\langle G \rangle$ of HAM-CYCLE to instance $\langle G', c \rangle$ of TSP (optimization) where G' is a complete graph and

$$c(u,v) = \left\{ egin{array}{ll} 1 & \mbox{if } (u,v) \in E \\
ho|V|+1 & \mbox{otherwise} \end{array}
ight.$$

- ▶ If *G* has a Hamiltonian cycle, there is a TSP tour of cost |V|, so a ρ -approximation tour would have cost $\leq \rho |V|$
- ▶ If G has no Hamiltonian cycle, the cheapest tour's cost is at least

$$(\rho|V|+1)+(|V|-1)=\rho|V|+|V|>\rho|V|$$

 \Rightarrow If in polynomial time we can get a ρ -approximation of an optimal TSP tour, then we can compare its cost to $\rho|V|$ to solve HAM-CYCLE in polynomial time

Notes and Questions