
1/35

Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 11 — Maximum Flow (Chapter 26)

Stephen Scott and Vinodchandran N. Variyam

2/35

Introduction

I Can use a directed graph as a flow network to model:
I Data through communication networks, water/oil/gas

through pipes, assembly lines, etc.
I A flow network is a directed graph with two special

vertices: source s that produces flow and sink t that takes
in flow

I Each directed edge is a conduit with a certain capacity
(e.g., 200 gallons/hour)

I Vertices are conduit junctions
I Except for s and t , flow must be conserved: The flow into a

vertex must match the flow out
I Maximum flow problem: Given a flow network, determine

the maximum amount of flow that can get from s to t
I Other application: Bipartite matching

3/35

Flow Networks
I A flow network G = (V ,E) is a directed graph in which

each edge (u, v) ∈ E has a nonnegative capacity
c(u, v) ≥ 0

I If (u, v) ∈ E then (v ,u) 6∈ E (workaround: Fig 26.2)
I If (u, v) 6∈ E then c(u, v) = 0
I No self-loops
I Assume that every vertex in V lies on some path from the

source vertex s ∈ V to the sink vertex t ∈ V

4/35

Flows

I A flow in graph G is a function f : V ×V → R that satisfies:

1. Capacity constraint: For all u, v ∈ V , 0 ≤ f (u, v) ≤ c(u, v)
(flow nonnegative and does not exceed capacity)

2. Flow conservation: For all u ∈ V \ {s, t},∑
v∈V

f (v ,u) =
∑
v∈V

f (u, v)

(flow entering a vertex = flow leaving)
I Value of flow f is net flow out of s (= net flow into t):

|f | =
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s)

I Maximum flow problem: given graph and capacities, find
a flow of maximum value

5/35

Flow Example

What is the value of this flow?

6/35

Multiple Sources and Sinks

I Might have cases where there are multiple sources and/or
sinks; e.g., if there are multiple factories producing
products and/or multiple warehouses to ship to

I Can easily accommodate graphs with multiple sources
s1, . . . , sk and multiple sinks t1, . . . , t`

I Add to G a supersource s with an edge (s, si) for
i ∈ {1, . . . , k} and a supersink t with an edge (tj , t) for
j ∈ {1, . . . , `}

I Each new edge has a capacity of∞

7/35

Multiple Sources and Sinks (2)

8/35

Ford-Fulkerson Method

I A method (rather than specific algorithm) for solving max
flow

I Multiple ways of implementing, with varying running times
I Core concepts:

1. Residual network: A network Gf , which is G with
capacities updated based on the amount of flow f already
going through it

2. Augmenting path: A simple path from s to t in residual
network Gf

⇒ If such a path exists, then can push more flow through
network

3. Cut: A partition of V into S and T where s ∈ S and t ∈ T ;
can measure net flow and capacity crossing a cut

I Method repeatedly finds an augmenting path in residual
network, adds in flow along the path, then updates residual
network

9/35

Ford-Fulkerson-Method(G, s, t)

1 Initialize flow f (u, v) = 0 for all (u, v) ∈ V × V ;
2 while there exists augmenting path p in residual

network Gf do
3 augment flow f along p ;
4 end
5 return f ;

10/35

Residual Networks

I Given flow network G with capacities c and flow f , residual
network Gf consists of edges with capacities showing how
one can change flow in G

I Define residual capacity of an edge as

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E
f (v ,u) if (v ,u) ∈ E
0 otherwise

I E.g. if c(u, v) = 16 and f (u, v) = 11, then cf (u, v) = 5 and
cf (v ,u) = 11

I Then can define Gf = (V ,Ef) as

Ef = {(u, v) ∈ V × V : cf (u, v) > 0}

I So Gf will have some edges not in G, and vice-versa

11/35

Residual Networks (2)

12/35

Flow Augmentation

I Gf is like a flow network (except that it can have an edge
and its reversal); so we can find a flow within it

I If f is a flow in G and f ′ is a flow in Gf , can define the
augmentation of f by f ′ as

(f ↑ f ′)(u, v) =
{

f (u, v) + f ′(u, v)− f ′(v ,u) if (u, v) ∈ E
0 otherwise

I Lemma: f ↑ f ′ is a flow in G with value |f ↑ f ′| = |f |+ |f ′|
I Proof: Show that f ↑ f ′ satisfies capacity constraint and

and flow conservation; then show that |f ↑ f ′| = |f |+ |f ′|
(pp. 718–719) ..

^

I Result: If we can find a flow f ′ in Gf , we can increase flow
in G

13/35

Augmenting Path

I By definition of residual network, an edge (u, v) ∈ Ef with
cf (u, v) > 0 can handle additional flow

I Since edges in Ef all have positive residual capacity, it
follows that if there is a simple path p from s to t in Gf , then
we can increase flow along each edge in p, thus increasing
total flow

I We call p an augmenting path
I The amount of flow we can put on p is p’s residual

capacity:

cf (p) = min{cf (u, v) : (u, v) is on p}

14/35

Augmenting Path (2)

p is shaded; what is cf (p)?

15/35

Augmenting Path (3)

I Lemma: Let G = (V ,E) be a flow network, f be a flow in
G, and p be an augmenting path in Gf . Define
fp : V × V → R as

fp(u, v) =
{

cf (p) if (u, v) ∈ p
0 otherwise

Then fp is a flow in Gf with value |fp| = cf (p) > 0
I Corollary: Let G, f , p, and fp be as above. Then f ↑ fp is a

flow in G with value |f ↑ fp| = |f |+ |fp| > |f |
I Thus, every augmenting path increases flow in G
I When do we stop?

16/35

Ford-Fulkerson(G, s, t)

1 for each edge (u, v) ∈ E do
2 f (u, v) = 0 ;
3 end
4 while there exists path p from s to t in Gf do
5 cf (p) = min{cf (u, v) : (u, v) is in p} ;
6 for each edge (u, v) ∈ p do
7 if (u, v) ∈ E then
8 f (u, v) = f (u, v) + cf (p) ;
9 else

10 f (v , u) = f (v , u)− cf (p) ;

11 end

12 end

17/35

Ford-Fulkerson Example

18/35

Ford-Fulkerson Example (2)

Will we have a maximum flow if there is no augmenting path?

19/35

Max-Flow Min-Cut Theorem

I Used to prove that once we run out of augmenting paths,
we have a maximum flow

I A cut (S,T) of a flow network G = (V ,E) is a partition of
V into S ⊆ V and T = V \ S such that s ∈ S and t ∈ T

I Net flow across the cut (S,T) is

f (S,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v ,u)

I Capacity of cut (S,T) is

c(S,T) =
∑
u∈S

∑
v∈T

c(u, v)

I A minimum cut is one whose capacity is smallest over all
cuts

20/35

Max-Flow Min-Cut Theorem (2)

What are f (S,T) and c(S,T)?

21/35

Max-Flow Min-Cut Theorem (3)

I Lemma: For any flow f , the value of f is the same as the
net flow across any cut; i.e., f (S,T) = |f | for all cuts (S,T)

I Corollary: The value of any flow f in G is upperbounded
by the capacity of any cut of G

I Proof:

|f | = f (S,T)

=
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v ,u)

≤
∑
u∈S

∑
v∈T

f (u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T) ..
^

22/35

Max-Flow Min-Cut Theorem (4)

I Max-Flow Min-Cut Theorem: If f is a flow in flow network
G, then these statements are equivalent:

1. f is a maximum flow in G
2. Gf has no augmenting paths
3. |f | = c(S,T) for some (i.e., minimum) cut (S,T) of G

I Proof: Show (1)⇒ (2)⇒ (3)⇒ (1)
I (1)⇒ (2): If Gf has augmenting path p, then fp > 0 and
|f ↑ fp| = |f |+ |fp| > |f |, a contradiction

23/35

Max-Flow Min-Cut Theorem (5)

I (2)⇒ (3): Assume Gf has no path from s to t and define
S = {v ∈ V : s v in Gf} and T = V \ S

I (S,T) is a cut since it partitions V , s ∈ S and t ∈ T
I Consider u ∈ S and v ∈ T :

I If (u, v) ∈ E , then f (u, v) = c(u, v) since otherwise
cf (u, v) > 0⇒ (u, v) ∈ Ef ⇒ v ∈ S

I If (v , u) ∈ E , then f (v , u) = 0 since otherwise we’d have
cf (u, v) = f (v , u) > 0⇒ (u, v) ∈ Ef ⇒ v ∈ S

I If (u, v) 6∈ E and (v , u) 6∈ E , then f (u, v) = f (v , u) = 0
I Thus (by applying the Lemma as well)

|f | = f (S,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
v∈T

∑
u∈S

f (v ,u)

=
∑
u∈S

∑
v∈T

c(u, v)−
∑
v∈T

∑
u∈S

0 = c(S,T)

24/35

Max-Flow Min-Cut Theorem (6)

I (3)⇒ (1):
I Corollary says that |f | ≤ c(S′,T ′) for all cuts (S′,T ′)
I We’ve established that |f | = c(S,T)

⇒ |f | can’t be any larger
⇒ f is a maximum flow ..

^

25/35

Analysis of Ford-Fulkerson

I Assume all of G’s capacities are integers
I If not, but values still rational, can scale them
I If values irrational, might not converge ..

_

I If we choose augmenting path arbitrarily, then |f | increases
by at least one unit per iteration⇒ number of iterations is
≤ |f ∗| = value of max flow

I |Ef | ≤ 2|E |
I Every vertex is on a path from s to t ⇒ |V | = O(|E |)
⇒ Finding augmenting path via BFS or DFS takes time

O(|E |), as do initialization and each augmentation step
I Total time complexity: O(|E ||f ∗|)
I Not polynomial in size of input! (What is size of input?)

26/35

Example of Large |f ∗|

Arbitrary choice of augmenting path can result in small increase
in |f | each step

Takes 2× 106 augmentations

27/35

Edmonds-Karp Algorithm

I Uses Ford-Fulkerson Method
I Rather than arbitrary choice of augmenting path p from s

to t in Gf , choose one that is shortest in terms of number
of edges

I How can we easily do this?
I Will show time complexity of O(|V ||E |2), independent of
|f ∗|

I Proof based on δf (u, v), which is length of shortest path
from u to v in Gf , in terms of number of edges

I Lemma: When running Edmonds-Karp on G, for all
vertices v ∈ V \ {s, t}, shortest path distance δf (u, v) in Gf
increases monotonically with each flow augmentation

28/35

Edmonds-Karp Algorithm (2)
I Theorem: When running Edmonds-Karp on G, the total

number of flow augmentations is O(|V ||E |)
I Proof: Call an edge (u, v) critical on augmenting path p if

cf (p) = cf (u, v)
I When (u, v) is critical for the first time,
δf (s, v) = δf (s,u) + 1

I At the same time, (u, v) disappears from residual network
and does not reappear until its flow decreases, which only
happens when (v ,u) appears on an augmenting path, at
which time

δf ′(s,u) = δf ′(s, v) + 1
≥ δf (s, v) + 1 (from Lemma)
= δf (s,u) + 2

I Thus, from the time (u, v) becomes critical to the next time
it does, u’s distance from s increases by at least 2

29/35

Edmonds-Karp Algorithm (3)

I Since u’s distance from s is at most |V | − 2 (because
u 6= t) and at least 0, edge (u, v) can be critical at most
|V |/2 times

I There are at most 2|E | edges that can be critical in a
residual network

I Every augmentation step has at least one critical edge
⇒ Number of augmentation steps is O(|V ||E |), instead of

O(|f ∗|) in previous algorithm
⇒ Edmonds-Karp time complexity is O(|V ||E |2) ..

^

30/35

Maximum Bipartite Matching

I In undirected graph G = (V ,E), a matching is a subset of
edges M ⊆ E such that for all v ∈ V , at most one edge
from M is incident on v

I If an edge from M is incident on v , v is matched,
otherwise unmatched

I Problem: Find a matching of maximum cardinality
I Special case: G is bipartite, meaning V partitioned into

disjoint sets L and R and all edges of E go between L and
R

I Applications: Matching machines to tasks, arranging
marriages between interested parties, etc.

31/35

Bipartite Matching Example

|M| = 2 |M| = 3 (maximum)

32/35

Casting Bipartite Matching as Max Flow

I Can cast bipartite matching problem as max flow
I Given bipartite graph G = (V ,E), define corresponding

flow network G′ = (V ′,E ′):

V ′ = V ∪ {s, t}

E ′ = {(s,u) : u ∈ L}∪{(u, v) : (u, v) ∈ E}∪{(v , t) : v ∈ R}

I c(u, v) = 1 for all (u, v) ∈ E ′

33/35

Casting Bipartite Matching as Max Flow (2)

Value of flow across cut (L ∪ {s},R ∪ {t}) equals |M|

34/35

Casting Bipartite Matching as Max Flow (3)
I Lemma: Let G = (V ,E) be a bipartite graph with V

paritioned into L and R and let G′ = (V ′,E ′) be its
corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G′ with value |f | = |M|.
Conversely, if there is an integer-valued flow f in G′, then
there is a matching M in G with cardinality |M| = |f |.

I Proof: ⇒ If (u, v) ∈ M, set f (s,u) = f (u, v) = f (v , t) = 1
I Set flow of all other edges to 0
I Flow satisfies capacity constraint and flow conservation
I Flow across cut (L ∪ {s},R ∪ {t}) is |M|

I ⇐ Let f be integer-valued flow in G′, and set

M = {(u, v) : u ∈ L, v ∈ R, f (u, v) > 0}

I Any flow into u must be exactly 1 in and exactly 1 out on
one edge

I Similar argument for v ∈ R, so M is a matching with
|M| = |f | ..

^

35/35

Casting Bipartite Matching as Max Flow (4)

I Theorem: If all edges in a flow network have integral
capacities, then the Ford-Fulkerson method returns a flow
with value that is an integer, and for all (u, v) ∈ V , f (u, v) is
an integer

I Since the corresponding flow network for bipartite
matching uses all integer capacities, can use
Ford-Fulkerson to solve matching problem

I Any matching has cardinality O(|V |), so the corresponding
flow network has a maximum flow with value |f ∗| = O(|V |),
so time complexity of matching is O(|V ||E |)

	Introduction
	Flow Networks
	Example
	Multiple Sources and Sinks

	Ford-Fulkerson Method
	Residual Networks
	Flow Augmentation
	Augmenting Path
	Basic Ford-Fulkerson Algorithm
	Ford-Fulkerson Example
	Max-Flow Min-Cut Theorem
	Analysis of Ford-Fulkerson

	Edmonds-Karp Algorithm
	Maximum Bipartite Matching
	Example
	Casting Bipartite Matching as Max Flow

