Introduction

» Given a weighted, directed graph G = (V, E) with weight
functonw: E - R

. . . » The weight of path p = (v, v, ...,) is the sum of the

Computgr Science & Engineering 423/823 weights of its edges:

Design and Analysis of Algorithms

Lecture 07 — Single-Source Shortest Paths (Chapter 24) w(p) = w(Vi_1,)

-

i=1

Stephen Scott and Vinodchandran N. Variyam » Then the shortest-path weight from v to v is

3(u,v) = min{w(p) : u o v} ifthereis a path from uto v
’ o otherwise

» A shortest path from u to v is any path p with weight
w(p) = é(u,v)
» Applications: Network routing, driving directions

Types of Shortest Path Problems Notes and Questions

Given G as described earlier,

» Single-Source Shortest Paths: Find shortest paths from
source node s to every other node
» Single-Destination Shortest Paths: Find shortest paths
from every node to destination ¢
» Can solve with SSSP solution. How?
» Single-Pair Shortest Path: Find shortest path from
specific node u to specific node v
» Can solve via SSSP; no asymptotically faster algorithm
known
» All-Pairs Shortest Paths: Find shortest paths between
every pair of nodes

» Can solve via repeated application of SSSP, but can do
better

Optimal Substructure of a Shortest Path Notes and Questions

The shortest paths problem has the optimal substructure
property: If p = (vo, v1, ..., V) is a SP from vy to v, then for
0<i<j<k, pj=(VVit1,...,V;) isaSP fromv;toy;
Proof: Letp = vy e % L4 vj R Vi with weight
w(p) = w(por) + w(py) + w(ps). If there exists a path pj
from v; to v; with w(pfj) < w(pj), then pis not a SP since

P bk ,
vo B v L vj ~ v, has less weight than p

Negative-Weight Edges (1) Notes and Questions

» What happens if the graph G has edges with negative
weights?

» Dijkstra’s algorithm cannot handle this, Bellman-Ford can,
under the right circumstances (which circumstances?)

Negative-Weight Edges (2) Notes and Questions

Cycles Notes and Questions

» What kinds of cycles might appear in a shortest path?
» Negative-weight cycle
» Zero-weight cycle
» Positive-weight cycle

Relaxation Notes and Questions

» Given weighted graph G = (V, E) with source node s € V
and other node v € V (v # s), we'll maintain d[v], which is
upper bound on 4(s, v)

» Relaxation of an edge (u, v) is the process of testing

whether we can decrease d[v], yielding a tighter upper
bound

Initialize-Single-Source(G, s) Notes and Questions

for each vertex v € V do
dlv]=o0;

m[v] = NIL ;

end

d[s] =0;

o & w N =

Relax(u, v, w) Notes and Questions

-

if d[v] > d[u] + w(u, v) then
dv] = du] + w(u,v) ;
wvl=u;

w N

Relaxation Example Notes and Questions

u v u v
. RELAX(M,V,W) . RELAX(u VW)
u ¥ v u ¥ v
&——@
(@) (b)

Numbers in nodes are values of d

Bellman-Ford Algorithm Notes and Questions

» Works with negative-weight edges and detects if there is a
negative-weight cycle

» Makes | V| — 1 passes over all edges, relaxing each edge
during each pass

» No cycles implies all shortest paths have < |V| — 1 edges,
so that number of relaxations is sufficient

Bellman-Ford(G, w, s) Notes and Questions

INITIALIZE-SINGLE-SOURCE(G, S) ;
fori=1to|V|—1do
for each edge (u,v) € E do
| RELAX(u,v,w);
end

end
for each edge (u,v) € E do
if d[v] > d[u] + w(u, v) then
\ return FALSE // G has a negative-wt cycle ;

© ® N O o »n o N =

end
return TRUE // G has no neg-wt cycle reachable frm s ;

=)

Bellman-Ford Algorithm Example (1) Notes and Questions

Within each pass, edges relaxed in this order:
(t7 X)? (t7 y)? (t7 z)? (X7 t)7 (y7 X)7 (Y7 z)? (z7 X)7 (27 S)? (S7 t)7 (s7 .y)

Bellman-Ford Algorithm Example (2) Notes and Questions

(d) (e)

Within each pass, edges relaxed in this order:
(t.x),(t,¥), (L, 2),(x, 1), (¥, X), (¥, 2),(2,%),(2,5), (5, 1), (S, ¥)

Time Complexity of Bellman-Ford Algorithm Notes and Questions

v

INITIALIZE-SINGLE-SOURCE takes how much time?

RELAX takes how much time?

What is time complexity of relaxation steps (nested loops)?
What is time complexity of steps to check for
negative-weight cycles?

» What is total time complexity?

v

v

v

Correctness of Bellman-Ford: Finds SP Lengths

» Assume no negative-weight cycles

» Since no cycles appear in SPs, every SP has at most
|V| — 1 edges
» Then define sets Sy, S1, ... Sjy|—1:

Sc={veV:3s& vst i(s,v) = w(p) and |p| < k}

» Loop invariant: After jth iteration of outer relaxation loop
(Line 2), for all v € S;, we have d[v] = 4(s, v)
» aka path-relaxation property (Lemma 24.15)
» Can prove via induction on i:
» Obvious for i =0
» If holds for v € S;_1, then definition of relaxation and optimal
substructure = holds for v € S;
» Implies that, after | V| — 1 iterations, d[v] = d(s, v) for all
veV= S|v‘,1

Correctness of Bellman-Ford: Detects
Negative-Weight Cycles

» Letc = (w, vq,..., vk = W) be neg-weight cycle reachable

from s:
k

> w(viig,v) <0

i=1
If algorithm incorrectly returns TRUE, then (due to Line 8)
for all nodes in the cycle (i = 1,2,... k),

v

dlvi] < d[vi_1] + w(vi_1, v)

v

By summing, we get

k k k
> odvil <> dvid] + > w(vier, vi)
i=1 i=1 i=1

Since vo = vk, K, d[vi] = 32K, d[vi_4]
This implies that 0 < 3% , w(v;_1, v;), a contradiction

v

v

SSSPs in Directed Acyclic Graphs

» Why did Bellman-Ford have to run |V| — 1 iterations of
edge relaxations?

» To confirm that SP information fully propagated to all
nodes (path-relaxation property)

» What if we knew that, after we relaxed an edge just once,
we would be completely done with it?

» Can do this if G a dag and we relax edges in correct order
(what order?)

Notes and Questions

Notes and Questions

Notes and Questions

Dag-Shortest-Paths(G, w, s) Notes and Questions

-

topologically sort the vertices of G ;
INITIALIZE-SINGLE-SOURCE(G, S) ;

for each vertex u € V, taken in topo sorted
order do
for each v € Adj[u] do
| RELAX(u,v,w);
end

Fnd

w N

~ o o b

SSSP dag Example (1) Notes and Questions

SSSP dag Example (2) Notes and Questions

Analysis Notes and Questions

» Correctness follows from path-relaxation property similar to
Bellman-Ford, except that relaxing edges in topologically
sorted order implies we relax the edges of a shortest path

in order

» Topological sort takes how much time?

> INITIALIZE-SINGLE-SOURCE takes how much time?
» How many calls to RELAX?

» What is total time complexity?

Dijkstra’s Algorithm Notes and Questions

v

Greedy algorithm
Faster than Bellman-Ford
Requires all edge weights to be nonnegative

Maintains set S of vertices whose final shortest path
weights from s have been determined
» Repeatedly select u € V'\ S with minimum SP estimate,
add u to S, and relax all edges leaving u

Uses min-priority queue to repeatedly make greedy choice

v

v

\{

v

Dijkstra(G, w, s) Notes and Questions

-

INITIALIZE-SINGLE-SOURCE(G, S) ;
S=10;
Q=V;
while Q # () do
u = EXTRACT-MIN(Q) ;
S=Su{u};
for each v € Adj[u] do
| RELAX(u,v,w);
end

Fnd

© oo N o u & W N

-
o

Dijkstra’s Algorithm Example (1) Notes and Questions

Dijkstra’s Algorithm Example (2) Notes and Questions

Time Complexity of Dijkstra’s Algorithm Notes and Questions

» Using array to implement priority queue,
> INITIALIZE-SINGLE-SOURCE takes how much time?
What is time complexity to create Q?
How many calls to EXTRACT-MIN?
What is time complexity of EXTRACT-MIN?
How many calls to RELAX?
What is time complexity of RELAX?
What is total time complexity?

» Using heap to implement priority queue, what are the
answers to the above questions?

» When might you choose one queue implementation over
another?

v vyvYVvVvyVvyy

Correctness of Dijkstra’s Algorithm

» Invariant: At the start of each iteration of the while loop,
dlvl]=4(s,v)forallve S
» Proof: Let u be first node added to S where d[u] # (s, u)
> Letp:s&xaygiubeSPtouandyfirstnodeonpin
V-8
» Since y’s predecessor x € S, d[y] = d(s, y) due to
relaxation of (x, y)

» Since y precedes uin p and n @
edge wts non-negative:
dly] = é(s,y) < d(s,u) < d[u]

&

» Since u was chosen before y in line 5, d[u] < d[y], so
dly] = (s, y) = 6(s, u) = d[u], a contradiction

Since all vertices eventually end up in S, get correctness of the

algorithm

Linear Programming

» Given an m x n matrix A and a size-m vector b and a
size-n vector ¢, find a vector x of n elements that
maximizes "7, ¢;x; subject to Ax < b

1 1 22
» Eg,c=[2 —3],A_[1 —2],b_[4]

-1 0 -8
implies:
maximize 2x; — 3x. subject to

X1 +xp < 22
X1 —2x < 4
Xy > 8

» Solution: x; =16, X, = 6

Difference Constraints and Feasibility

» Decision version of this problem: No objective function
to maximize; simply want to know if there exists a feasible
solution, i.e., an x that satisfies Ax < b

» Special case is when each row of A has exactly one 1 and
one —1, resulting in a set of difference constraints of the
form

Xj — X; < by

» Applications: Any application in which a certain amount
of time must pass between events (x variables represent
times of events)

Notes and Questions

Notes and Questions

Notes and Questions

Difference Constraints and Feasibility (2) Notes and Questions

1 -1 0 0 0] [0 7
1 0 0 0 -1 -1
0 1 0 0 -1 1
-1 0 1 0 0 5
A=l 1 0 o 1 o |[3dP=] 4
0 0 -1 1 0 —1
0 0 -1 0 1 -3
Lo 0o 0 -1 1 | | -3 |
Difference Constraints and Feasibility (3) Notes and Questions
Is there a setting for x4, ..., x5 satisfying:
X1—X < 0
Xy —x5 < —1
Xo—X5 < 1
X3 —X1 < 5
X4 —Xx4 < 4
X4 — X3 < —1
X5 — Xz < -3
X5 — X4 < -3

One solution: x = (-5,-3,0, -1, —4)

Constraint Graphs Notes and Questions

» Can represent instances of this problem in a constraint
graph G= (V,E)

» Define a vertex for each variable, plus one more: If
variables are x1,...,Xn, get V ={vp, vy,...,Vn}

» Add a directed edge for each constraint, plus an edge from
vp to each other vertex:

E = {(vi,vj): x; — x; < by is a constraint}

U{(vo, v1), (vo, v2), ..., (Vo, V) }

» Weight of edge (v;, ;) is by, weight of (vp, v¢) is 0 for all
040

Constraint Graph Example Notes and Questions

X=X < 0
Xy —Xxs < —1
Xo—X5 < 1
X3—X1 < 5
X4 —Xx1 < 4
X4 — X3 < -1
Xs— X3 < -3
Xs— X4 < -3

(_57 _3? 07 -1 ’ _4)

Solving Feasibility with Bellman-Ford Notes and Questions
Theorem: Let G be constraint graph for system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution. If G has no negative-weight cycle, then a
feasible solution is

x = [6(vo, v1),8(vo, v2), ..., 6(Vo, V)]

» Proof: For any edge (v;, v;) € E, triangle inequality says
5(vo, v)) < 6(vo, vi) + w(v;, vj), so
6(‘/0? Vj) - 6(\/07 Vi) < W(Vi7 Vj)

= X = (v, v;) and x; = §(vp, v;) satisfies constraint

Xi — X < w(vi, v))

» If there is a negative-weight cycle
¢ ={Vj,Vii1,...,V = V), then there is a system of
inequalities Xip1 — X < W(V,‘, Vit),
Xiy2 = Xip1 < W(Vip1, Viz), o Xk — Xkt < W(Vi—1, Vi)
Summing both sides gives 0 < w(c) < 0, implying that a
negative-weight cycle indicates no solution

Can solve with Bellman-Ford in time O(n? +.nm)

