Introduction

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 03 — Dynamic Programming (Chapter 15)

Stephen Scott and Vinodchandran N. Variyam

- Dynamic programming is a technique for solving optimization problems
- Key element: Decompose a problem into subproblems, solve them recursively, and then combine the solutions into a final (optimal) solution
- Important component: There are typically an exponential number of subproblems to solve, but many of them overlap
 - ⇒ Can re-use the solutions rather than re-solving them
- ▶ Number of distinct subproblems is polynomial

Rod Cutting (1)

- A company has a rod of length n and wants to cut it into smaller rods to maximize profit
- ► Have a table telling how much they get for rods of various lengths: A rod of length *i* has price *p_i*
- The cuts themselves are free, so profit is based solely on the prices charged for of the rods
- If cuts only occur at integral boundaries 1, 2, ..., n-1, then can make or not make a cut at each of n-1 positions, so total number of possible solutions is 2^{n-1}

Rod Cutting (2)

i	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	30

4□ ▷ ←□ ▷ ← Ξ ▷ ← Ξ ▷ ← Ξ ◆ ⊃ Q (~

←□ → ←□ → ← 돌 → ← 돌 → 의 へ ○

Rod Cutting (3)

- Given a rod of length n, want to find a set of cuts into lengths i_1, \ldots, i_k (where $i_1 + \cdots + i_k = n$) and **revenue** $r_n = p_{i_1} + \cdots + p_{i_k}$ is maximized
- For a specific value of n, can either make no cuts (revenue $= p_n$) or make a cut at some position i, then optimally solve the problem for lengths i and n i:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_i + r_{n-i}, \dots, r_{n-1} + r_1)$$

- Notice that this problem has the optimal substructure property, in that an optimal solution is made up of optimal solutions to subproblems
 - ► Easy to prove via contradiction (How?)
 - Can find optimal solution if we consider all possible subproblems
- ▶ Alternative formulation: Don't further cut the first segment:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Cut-Rod(p, n)

if
$$n==0$$
 then
$$\begin{vmatrix} \mathbf{return} \ 0 \ \vdots \end{vmatrix}$$
 return 0;
$$q=-\infty;$$
 for $i=1$ to n do
$$\begin{vmatrix} q=\max{(q,p[i]+\mathrm{Cut}\mathrm{-Rod}(p,n-i))} \end{vmatrix}$$
 end return q ;

Time Complexity

- ▶ Let *T*(*n*) be number of calls to Cut-Rod
- ▶ Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

- Why exponential? Cut-Rod exploits the optimal substructure property, but repeats work on these subproblems
- ▶ E.g., if the first call is for n = 4, then there will be:
 - ▶ 1 call to Cut-Rod(4)
 - ▶ 1 call to CuT-Rop(3)
 - ▶ 2 calls to Cut-RoD(2)
 - ▶ 4 calls to Cut-Rod(1)
 - ▶ 8 calls to Cut-Rod(0)

Time Complexity (2)

Recursion Tree for n = 4

4□ > 4团 > 4 至 > 4 至 > 至 900 · ...

Dynamic Programming Algorithm

- Can save time dramatically by remembering results from prior calls
- ► Two general approaches:
 - Top-down with memoization: Run the recursive algorithm as defined earlier, but before recursive call, check to see if the calculation has already been done and memoized
 - 2. **Bottom-up**: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones
- ▶ Typically have the same asymptotic running time

Memoized-Cut-Rod-Aux(p, n, r)

```
 \begin{array}{l} \text{1} & \text{if } r[n] \geq 0 \text{ then} \\ 2 & | & \text{return } r[n] & \textit{// r} \text{ initialized to all } -\infty \,; \\ 3 & \text{if } n == 0 \text{ then} \\ 4 & | & q = 0 \,; \\ 6 & | & q = -\infty \,; \\ 7 & \text{for } i = 1 \text{ to } n \text{ do} \\ 8 & | & q = \\ & & \max \left(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n-i, r)\right) \\ 9 & \text{end} \\ 10 & | & r[n] = q \,; \\ 11 & \text{return } q \,; \\ \end{array}
```

□ ▶ ← □ ▶

Bottom-Up-Cut-Rod(p, n)

1 Allocate
$$r[0...n]$$
;
2 $r[0] = 0$;
3 for $j = 1$ to n do
4 $q = -\infty$;
5 for $i = 1$ to j do
6 $q = \max(q, p[i] + r[j - i])$
8 $r[j] = q$;
end
10 return $r[n]$;

First solves for n = 0, then for n = 1 in terms of r[0], then for n = 2 in terms of r[0] and r[1], etc.

Example

	i	1	2	3	4	5	6	7	8	9	10
[pi	1	5	8	9	10	17	17	20	24	30

$$j = 1$$

$$j = 2$$

$$i = 1$$

$$j = 2$$

$$i = 1$$

$$j = 2$$

$$j = 3$$

$$j = 1$$

$$j = 1$$

$$j = 1$$

$$j = 4$$

$$j = 4$$

$$j = 3$$

$$j = 4$$

$$j = 4$$

$$j = 3$$

$$j = 4$$

$$j = 6$$

$$j = 7$$

$$j =$$

Time Complexity

Subproblem graph for n = 4

Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$

Reconstructing a Solution

- If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem
- Will add a second array s, which keeps track of the optimal size of the first piece cut in each subproblem

Extended-Bottom-Up-Cut-Rod(p, n)

```
1 Allocate r[0...n] and s[0...n];
2 r[0] = 0;
3 for j = 1 to n do
4 q = -\infty;
5 for i = 1 to j do
6 if q < p[i] + r[j - i] then
7 q = p[i] + r[j - i];
8 end
10 r[j] = q;
11 end
12 return r, s;
```


Print-Cut-Rod-Solution(p, n)

```
1 (r,s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p,n);
2 while n > 0 do
3 print s[n];
4 n = n - s[n];
5 end
```

Example:

	1										
i											
r[i]											
s[i]	0	1	2	3	2	2	6	1	2	3	10

If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments of sizes 1 and 6

+□→ +□→ +□→ +□→ □□ → 0

Matrix-Chain Multiplication (1)

- ▶ Given a chain of matrices $\langle A_1, \dots, A_n \rangle$, goal is to compute their product $A_1 \cdots A_n$
- This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- Can cause dramatic changes in number of operations required
- ► Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires pqr steps and yields a $p \times r$ matrix for future multiplications
- ▶ E.g., Let A_1 be 10×100 , A_2 be 100×5 , and A_3 be 5×50
 - Computing ((A₁A₂)A₃) requires 10 · 100 · 5 = 5000 steps to compute (A₁A₂) (yielding a 10 × 5), and then 10 · 5 · 50 = 2500 steps to finish, for a total of 7500
 - 2. Computing $(A_1(A_2A_3))$ requires $100 \cdot 5 \cdot 50 = 25000$ steps to compute (A_2A_3) (yielding a 100×50), and then $10 \cdot 100 \cdot 50 = 50000$ steps to finish, for a total of 75000

Matrix-Chain Multiplication (2)

- The **matrix-chain multiplication problem** is to take a chain $\langle A_1, \ldots, A_n \rangle$ of n matrices, where matrix i has dimension $p_{i-1} \times p_i$, and fully parenthesize the product $A_1 \cdots A_n$ so that the number of scalar multiplications is minimized
- $\,\blacktriangleright\,$ Brute force solution is infeasible, since its time complexity is $\Omega\left(4^n/n^{3/2}\right)$
- ▶ We will follow **4-step procedure** for dynamic programming:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution
 - 4. Construct an optimal solution from computed information

Step 1: Characterizing Structure of Optimal Solution

- ▶ Let $A_{i...i}$ be the matrix from the product $A_iA_{i+1} \cdots A_i$
- ▶ To compute $A_{i...i}$, must split the product and compute $A_{i...k}$ and $A_{k+1...j}$ for some integer k, then multiply the two
- Cost is the cost of computing each subproduct plus cost of multiplying the two results
- Say that in an optimal parenthesization, the optimal split for $A_i A_{i+1} \cdots A_i$ is at k
- ▶ Then in an optimal solution for $A_i A_{i+1} \cdots A_i$, the parenthisization of $A_i \cdots A_k$ is itself optimal for the subchain $A_i \cdots A_k$ (if not, then we could do better for the larger chain, i.e., proof by contradiction)
- ▶ Similar argument for $A_{k+1} \cdots A_i$
- ▶ Thus if we make the right choice for k and then optimally solve the subproblems recursively, we'll end up with an optimal solution
- ► Since we don't know optimal k, we'll try them all

Step 2: Recursively Defining Value of Optimal Solution

- ▶ Define m[i, j] as minimum number of scalar multiplications needed to compute Ai...i
- (What entry in the *m* table will be our final answer?)
- Computing m[i, j]:
 - 1. If i = j, then no operations needed and m[i, i] = 0 for all i
 - 2. If i < j and we split at k, then optimal number of operations needed is the optimal number for computing $A_{i...k}$ and $A_{k+1...j}$, plus the number to multiply them:

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i$$

3. Since we don't know k, we'll try all possible values:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

To track the optimal solution itself, define s[i, j] to be the value of k used at each split

Step 3: Computing Value of Optimal Solution

- As with the rod cutting problem, many of the subproblems we've defined will overlap
- ▶ Exploiting overlap allows us to solve only $\Theta(n^2)$ problems (one problem for each (i, j) pair), as opposed to exponential
- ▶ We'll do a bottom-up implementation, based on chain length
- ▶ Chains of length 1 are trivially solved (m[i, i] = 0 for all i)
- ▶ Then solve chains of length 2, 3, etc., up to length n
- Linear time to solve each problem, quadratic number of problems, yields $O(n^3)$ total time

Matrix-Chain-Order(p, n)

Example

matrix	A ₁	A_2	A ₃	A_4	A_5	A_6
dimension	30 × 35	35 × 15	15 × 5	5 × 10	10 × 20	20 × 25
p_i	$p_0 \times p_1$	$p_1 \times p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 \times p_5$	$p_5 \times p_6$

Step 4: Constructing Optimal Solution from Computed Information

- ▶ Cost of optimal parenthesization is stored in m[1, n]
- First split in optimal parenthesization is between s[1, n] and s[1, n] + 1
- Descending recursively, next splits are between s[1, s[1, n]] and s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and s[s[1, n] + 1, n] + 1 for right side
- and so on...

4 D > 4 P > 4 E > 4 E > E = 490 P

Print-Optimal-Parens(s, i, j)

```
1 if i == j then
   print "A";
2
3 else
      print "(";
      PRINT-OPTIMAL-PARENS(s, i, s[i, j]);
      PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j);
      print ")";
```

4 m >

Example

Optimal parenthesization: $((A_1(A_2A_3))((A_4A_5)A_6))$

4 m >

Example of How Subproblems Overlap

Entire subtrees overlap:

See Section 15.3 for more on optimal substructure and overlapping subproblems

Aside: More on Optimal Substructure

- ► The shortest path problem is to find a shortest path between two nodes in a graph
- The longest simple path problem is to find a longest simple path between two nodes in a graph
- Does the shortest path problem have optimal substructure? Explain
- What about longest simple path?

4 m >

Aside: More on Optimal Substructure (2)

- No, LSP does not have optimal substructure
- A LSP from q to t is $q \rightarrow r \rightarrow t$
- But $q \rightarrow r$ is **not** a LSP from q to r
- ▶ What happened?
- ▶ The subproblems are not independent: LSP $q \rightarrow s \rightarrow t \rightarrow r$ from q to r uses up all the vertices, so we cannot independently solve LSP from r to t and combine
 - In contrast, SP subproblems don't share resources: can combine any SP $u \rightsquigarrow w$ with any SP $w \rightsquigarrow v$ to get a SP
- In fact, the LSP problem is NP-complete, so probably no efficient algorithm exists

Longest Common Subsequence

- ▶ Sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a **subsequence** of another sequence $X = \langle x_1, x_2, \dots, x_m \rangle$ if there is a strictly increasing sequence $\langle i_1,\ldots,i_k\rangle$ of indices of X such that for all $j = 1, \ldots, k$, $x_{i_i} = z_j$
- ▶ I.e., as one reads through Z, one can find a match to each symbol of Z in X, in order (though not necessarily contiguous)
- ▶ E.g., $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ since $z_1 = x_2, z_2 = x_3, z_3 = x_5,$ and $z_1 = x_7$
- Z is a common subsequence of X and Y if it is a subsequence of both
- The goal of the longest common subsequence problem is to find a maximum-length common subsequence (LCS) of sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$

Step 1: Characterizing Structure of Optimal Solution

- ▶ Given sequence $X = \langle x_1, \dots, x_m \rangle$, the *i*th **prefix** of X is $X_i = \langle x_1, \dots, x_j \rangle$
- ▶ Theorem If $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$ have LCS $Z = \langle z_1, \dots, z_k \rangle$, then
 - 1. $x_m = y_n \Rightarrow z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1} and Y_{n-1}
 - ▶ If $z_k \neq x_m$, can lengthen Z, \Rightarrow contradiction
 - ▶ If Z_{k-1} not LCS of X_{m-1} and Y_{n-1} , then a longer CS of X_{m-1} and Y_{n-1} could have x_m appended to it to get CS of X and Y that is longer than Z, \Rightarrow contradiction
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - If z_k ≠ x_m, then Z is a CS of X_{m-1} and Y. Any CS of X_{m-1} and Y that is longer than Z would also be a longer CS for X and Y, ⇒ contradiction
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}
 - ► Similar argument to (2)

<□ > < 🗗 > < ½ > < ½ > > ½ < < < < > < < > < 31/4

Step 2: Recursively Defining Value of Optimal Solution

- The theorem implies the kinds of subproblems that we'll investigate to find LCS of X = ⟨x₁,...,x_m⟩ and Y = ⟨y₁,...,y_n⟩
- ▶ If $x_m = y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m (= y_n) to it
- ▶ If $x_m \neq y_n$, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one
- ▶ Let c[i,j] = length of LCS of X_i and Y_i

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Step 3: LCS-Length(X, Y, m, n)

```
1 allocate b[1 \dots m, 1 \dots n] and c[0 \dots m, 0 \dots n];
 initialize c[i,0]=0 and c[0,j]=0 \forall 0 \le i \le m and 0 \le j \le n;
    for i = 1 to m do
         for j = 1 to n do
               if x_i == y_j then c[i,j] = c[i-1,j-1] + 1;
                     b[i,j] = " \nwarrow ";
               else if c[i-1,j] \ge c[i,j-1] then c[i,j] = c[i-1,j];
                     b[i,j] = "\uparrow";
10
12
                     c[i,j] = c[i,j-1];
                     b[i,j] = "\leftarrow" \; ;
14
         end
15 end
16 return (c, b);
```

What is the time complexity?

4 D > 4 D > 4 E > 4 E > E 990

Example

$$X = \langle A, B, C, B, D, A, B \rangle, Y = \langle B, D, C, A, B, A \rangle$$

Step 4: Constructing Optimal Solution from Computed Information

- ▶ Length of LCS is stored in c[m, n]
- To print LCS, start at b[m, n] and follow arrows until in row or column 0
- ▶ If in cell (i, j) on this path, when $x_i = y_j$ (i.e., when arrow is " \nwarrow "), print x_i as part of the LCS
- ► This will print LCS backwards

Print-LCS(b, X, i, j)

```
1 if i == 0 or j == 0 then
2 | return;
3 if b[i,j] == \text{``} \text{''} then
4 | PRINT-LCS(b, X, i-1, j-1);
5 | print x_i;
6 else if b[i,j] == \text{``} \text{''} then
7 | PRINT-LCS(b, X, i-1, j);
8 else PRINT-LCS(b, X, i, j-1);
```

What is the time complexity?

←□▶←□▶←□▶←□▶←□▶ □ ♥♀

Example

 $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$, prints "BCBA"

Optimal Binary Search Trees

- Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time
- ▶ Given a sequence $K = \langle k_1, \dots, k_n \rangle$ of n distinct keys in sorted order
- Key k_i has probability p_i that it will be sought on a particular search
- ▶ To handle searches for values not in K, have n + 1 dummy keys d_0, d_1, \ldots, d_n to serve as the tree's leaves
- Dummy key d_i will be reached with probability q_i
- ▶ If depth $_{\mathcal{T}}(k_i)$ is distance from root of k_i in tree \mathcal{T} , then expected search cost of \mathcal{T} is

$$1 + \sum_{i=1}^{n} p_i \operatorname{depth}_{T}(k_i) + \sum_{i=0}^{n} q_i \operatorname{depth}_{T}(d_i)$$

 An optimal binary search tree is one with minimum expected search cost

38/44

Optimal Binary Search Trees (2)

Step 1: Characterizing Structure of Optimal Solution

- ▶ Observation: Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i,..., k_j and have leaves d_{i-1},..., d_i
- ▶ Thus, if an optimal BST T has a subtree T' over keys k_i, \ldots, k_j , then T' is optimal for the subproblem consisting of only the keys k_i, \ldots, k_j
 - If T' weren't optimal, then a lower-cost subtree could replace T' in T, \Rightarrow contradiction
- Given keys k_i,..., k_j, say that its optimal BST roots at k_r for some i ≤ r ≤ j
- ▶ Thus if we make right choice for k_r and optimally solve the problem for k_i, \ldots, k_{r-1} (with dummy keys d_{i-1}, \ldots, d_{r-1}) and the problem for k_{r+1}, \ldots, k_j (with dummy keys d_r, \ldots, d_i), we'll end up with an optimal solution
- ightharpoonup Since we don't know optimal k_r , we'll try them all

Step 2: Recursively Defining Value of Optimal Solution

- ▶ Define e[i,j] as the expected cost of searching an optimal BST built on keys k_i, \ldots, k_i
- ▶ If j = i 1, then there is only the dummy key d_{i-1} , so $e[i, i-1] = q_{i-1}$
- ▶ If $j \ge i$, then choose root k_r from k_i, \ldots, k_j and optimally solve subproblems k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_i
- ▶ When combining the optimal trees from subproblems and making them children of k_r, we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- ▶ Define $w(i,j) = \sum_{\ell=i}^{j} p_{\ell} + \sum_{\ell=i-1}^{j} q_{\ell}$ as the sum of probabilities of the nodes in the subtree built on k_i, \ldots, k_j , and get

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

Recursively Defining Value of Optimal Solution (2)

Note that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

- Thus we can condense the equation to e[i, j] = e[i, r 1] + e[r + 1, j] + w(i, j)
- Finally, since we don't know what k_r should be, we try them

$$\mathbf{e}[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \leq r \leq j} \{ \mathbf{e}[i,r-1] + \mathbf{e}[r+1,j] + \mathbf{w}(i,j) \} & \text{if } i \leq j \end{array} \right.$$

▶ Will also maintain table root[i, j] = index r for which k_r is root of an optimal BST on keys $k_i, ..., k_i$

Step 3: Optimal-BST(p, q, n)

```
| allocate e[1 \dots n+1, 0 \dots n], w[1 \dots n+1, 0 \dots n], and root[1 \dots n, 1 \dots n]; | nitialize e[i, i-1] = w[i, i-1] = q_{i-1} \ \forall \ 1 \le i \le n+1; | for \ell = 1 to n do | for i = 1 to n - \ell + 1 do | j = i + \ell - 1; | e[i, j = \infty; | w[i, j] = w[i, j - 1] + p_j + q_j; | for r = i to j do | t = e[i, r - 1] + e[r + 1, j] + w[i, j]; | for t = e[i, j] = t; | t = e[i, j] = t
```

What is the time complexity?

Example

