Introduction

Computer Science & Engineering 423/823 » Dynamic programming is a technique for solving

Design and Analysis of Algorithms optimization problems

Lecture 03 — Dynamic Programming (Chapter 15) » Key element: Decompose a problem into subproblems,
solve them recursively, and then combine the solutions into
a final (optimal) solution

Stephen Scott and Vinodchandran N. Variyam » Important component: There are typically an exponential
number of subproblems to solve, but many of them overlap

= Can re-use the solutions rather than re-solving them
» Number of distinct subproblems is polynomial

Rod Cutting (1) Rod Cutting (2)

i1 23 4 5 6 7 8 9 10
A company has a rod of length n and wants to cut it into 0il1 5 8 9 10 17 17 20 24 30

smaller rods to maximize profit
» Have a table telling how much they get for rods of various
lengths: A rod of length i has price p;

1 8 5 5 8 1
» The cuts themselves are free, so profit is based solely on OO0 D) OO0 D (BB

the prices charged for of the rods

v

@ (b) © @
» If cuts only occur at integral boundaries 1,2,...,n—1,
then can make or not make a cut at each of n — 1 1o 5 1 5 1 5 o R
positions, so total number of possible solutions is 2~ o oMo oo oo
(e) (f) (2) (h)
Rod Cutting (3) Cut-Rod(p, n)
» Given a rod of length n, want to find a set of cuts into
lengths iy, ..., ik (where iy + - -- + iy = n) and revenue

'n = Pi, + -+ + pj, is maximized

» For a specific value of n, can either make no cuts (revenue
= pn) or make a cut at some position i, then optimally solve
the problem for lengths i and n — i:

1 if n==0then
2| return0;

_ 3/g=—00;

In=max (pPn, f1 + 1,2+ 2, i+ iy, fa1 + 1) afori—1tondo

5

6

7

» Notice that this problem has the optimal substructure
property, in that an optimal solution is made up of optimal
solutions to subproblems

» Easy to prove via contradiction (How?)
= Can find optimal solution if we consider all possible
subproblems

» Alternative formulation: Don’t further cut the first segment:

| g =max(q,p[i] + CuT-RoD(p, n — 1))
nd
return g ;

I = max i i
n 1§i§n(p’+ n—i)



Time Complexity Time Complexity (2)

v

Let T(n) be number of calls to CUT-ROD
Thus T(0) = 1 and, based on the for loop,

Recursion Tree for n =4

v

n—1

T(n)=1+) T()=2"

j=0

v

Why exponential? CuT-RoD exploits the optimal
substructure property, but repeats work on these
subproblems
E.g., if the first call is for n = 4, then there will be:
> 1 call to CUT-ROD(4)
» 1 call to CUT-ROD(3)
» 2 calls to CuT-ROD(2)
» 4 calls to CuT-RoD(1)
» 8 calls to CuT-ROD(0)

v

Dynamic Programming Algorithm Memoized-Cut-Rod-Aux(p, n, r)

» Can save time dramatically by remembering results from 1 fi rin] > O then . _
i 2 || return r[n] // r initialized to all —oc ;
prior calls s §f n—— 0 then
» Two general approaches: a|| g=0;
1. Top-down with memoization: Run the recursive algorithm : e'seq s
as defined earlier, but before recursive call, check to see if ; fori—11ondo
the calculation has already been done and memoized 8 g=
2. Bottom-up: Fill in results for “small” subproblems first, then max (q, p[i] + MEMOIZED-CUT-RoD-AUX(p, n — i, r))
use these to fill in table for “larger” ones 9 end
» Typically have the same asymptotic running time ol r=a
1 feturngqg;
Bottom-Up-Cut-Rod(p, n) Example
i1 2 3 4 5 6 7 8 9 10
pil1t 5 8 9 10 17 17 20 24 30
1 Allocate r[0...n]; i
2 f[0]=0; j=1 ]
s forj=1tondo i=1
4 qg=—o0; j=2
5 fori=1tojdo i=1 p1+rn=2
| dgrmmane
7 end j=3
ol M=a: i=1 pi+r=1+5=6
o end i=2 p+nr=5+1=6
10 feturn r[n] ; i—3 ‘p3+ro:8+0:8:f3‘

1 pi+r=1+8=9
2 [p+r=5+5=10=r]
3 ptn+8+1=9
4 pa+rn=9+0=9

First solves for n = 0, then for n = 1 in terms of r[0], then for
n =2 interms of r[0] and r[1], etc.




Time Complexity

Subproblem graph for n = 4

Both algorithms take linear time to solve for each value of n, so
total time complexity is ©(n?)

Extended-Bottom-Up-Cut-Rod(p, n)

1 Allocate r[0...n]and s[0...n] ;

2 r[0]=0;

3 forj=1tondo

4 q=—00;

5 fori=1tojdo

6 if g < p[i] + r[j — /] then
7 q=pll+rlj—1;
8 s[il=1i;

9

end

10 rl=gq;
11 lend

12 freturnr;s;

Matrix-Chain Multiplication (1)

v

Given a chain of matrices (A1, ..., Ap), goal is to compute
their product Ay --- Aj

This operation is associative, so can sequence the
multiplications in multiple ways and get the same result

Can cause dramatic changes in number of operations
required
Multiplying a p x g matrix by a g x r matrix requires pqr
steps and yields a p x r matrix for future multiplications
E.g., Let A1 be 10 x 100, Az be 100 x 5, and Az be 5 x 50
1. Computing ((A1Az2)As) requires 10 - 100 - 5 = 5000 steps to
compute (A1Az) (yielding a 10 x 5), and then
10-5-50 = 2500 steps to finish, for a total of 7500
2. Computing (A1(A2Asz)) requires 100 - 5 - 50 = 25000 steps
to compute (A2As) (yielding a 100 x 50), and then
10- 100 - 50 = 50000 steps to finish, for a total of 75000

Reconstructing a Solution

» If interested in the set of cuts for an optimal solution as well
as the revenue it generates, just keep track of the choice
made to optimize each subproblem

» Will add a second array s, which keeps track of the optimal
size of the first piece cut in each subproblem

Print-Cut-Rod-Solution(p, n)

1 ((r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n) ;

2 while n > 0do

3 print s[n] ;

4 n=n-s[n];

s end
Example:
i 0123 4 5 6 7 8 9 10
rffo0 1 5 8 10 13 17 18 22 25 30
sfjjo 1t 2 3 2 2 6 1 2 3 10

If n =10, optimal solution is no cut; if n = 7, then cut once to
get segments of sizes 1 and 6

Matrix-Chain Multiplication (2)

» The matrix-chain multiplication problem is to take a
chain (A+, ..., An) of n matrices, where matrix i has
dimension p;_y x pj, and fully parenthesize the product
Aj -+ Ap so that the number of scalar multiplications is
minimized

» Brute force solution is infeasible, since its time complexity
is Q (47/n%/2)

» We will follow 4-step procedure for dynamic programming:

. Characterize the structure of an optimal solution

. Recursively define the value of an optimal solution

. Compute the value of an optimal solution

. Construct an optimal solution from computed information

A ON =



Step 1: Characterizing Structure of Optimal Solution

> Let A; ; be the matrix from the product A;A; 1 --- A;

» To compute A;_;, must split the product and compute A;
and Ax_1..j for some integer k, then multiply the two
together

» Cost is the cost of computing each subproduct plus cost of
multiplying the two results

» Say that in an optimal parenthesization, the optimal spilit for
AiAiq-- Aj is at k

» Then in an optimal solution for A;A; - - - A;, the
parenthisization of A; - - - A is itself optimal for the
subchain A; - - - A (if not, then we could do better for the
larger chain, i.e., proof by contradiction)

» Similar argument for Ag,1--- A;

» Thus if we make the right choice for k and then optimally
solve the subproblems recursively, we’ll end up with an
optimal solution

» Since we don’'t know optimal k, we’ll try them all

Step 3: Computing Value of Optimal Solution

» As with the rod cutting problem, many of the subproblems
we’ve defined will overlap

» Exploiting overlap allows us to solve only ©(r?) problems
(one problem for each (i, ) pair), as opposed to
exponential

» We’'ll do a bottom-up implementation, based on chain
length

» Chains of length 1 are trivially solved (m][i,i] = 0 for all /)
» Then solve chains of length 2, 3, etc., up to length n

» Linear time to solve each problem, quadratic number of
problems, yields O(n®) total time

Example

matrix A1 A2 A3 A4 A5 As

dimension | 30 x35 35x15 15x5 5x10 10x20 20x25

Pi PoXP1 Pt XP2 P2XP3s PsXPs PsXPs  PsXPs

Step 2: Recursively Defining Value of Optimal Solution

» Define m(i, j] as minimum number of scalar multiplications
needed to compute A; ;
» (What entry in the m table will be our final answer?)
» Computing m[i, j]:
1. If i = j, then no operations needed and m[i,i] = 0 for all /
2. If i < jand we split at k, then optimal number of operations
needed is the optimal number for computing A;._ x and
Ak+1...j» plus the number to multiply them:

mli,j] = mli, k] + m{k +1, /] + pi—1pxPp;
3. Since we don’t know k, we'll try all possible values:

miig =1 © ifi=j
T minjeke dmli K]+ mik o+ 1,0+ poapepyy it <

» To track the optimal solution itself, define s]i, j] to be the
value of k used at each split

Matrix-Chain-Order(p, n)

1 @llocate m[1...n,1...njand s[1...n,1...n];
2 jnitialize m[i,] =0v1<i<n;

3 for{=2tondo

4 fori=1ton—¢+1do

5 j=i+t-1;

6 mli,j] = o ;

7 fork=itoj—1do

8 q = mli, k] + mk +1,]] + pi—1Pxp; ;
9 if g < m[i,j] then

10 mli,jl=q;

11 sli,jl=k;

12 end

13 end
14 lend
15 feturn (m, s)

Step 4: Constructing Optimal Solution from Computed
Information

» Cost of optimal parenthesization is stored in m[1, n]

» First split in optimal parenthesization is between s[1, n] and
s[1,n] +1

» Descending recursively, next splits are between s[1, s[1, n]]
and s[1, s[1, n]] + 1 for left side and between
s[s[1,n] +1,n] and s[s[1, n] + 1, n] + 1 for right side

» and so on...



Print-Optimal-Parens(s, i, j)

if i == j then
| print A" ;
else
print “(” ;
PRINT-OPTIMAL-PARENS(S, i, S[i, ]]) ;
PRINT-OPTIMAL-PARENS(S, S[i, /] + 1,j) ;
print “)”;

N o o s w N o=

Example of How Subproblems Overlap

Entire subtrees overlap:

See Section 15.3 for more on optimal substructure and
overlapping subproblems

Aside: More on Optimal Substructure (2)

\{

No, LSP does not have optimal

o O substructure
.l ALSPfromqtotisq—r—t
a » Butg— risnotalLSPfromqgtor

O rmma
What happened?

v

v

» The subproblems are not independent: LSP
q — s — t— rfrom g to r uses up all the vertices, so we
cannot independently solve LSP from r to ¢ and combine
them
» In contrast, SP subproblems don’t share resources: can
combine any SP u ~» w with any SP w ~ v to get a SP
fromuto v

» In fact, the LSP problem is NP-complete, so probably no
efficient algorithm exists

Example

A Ay Ay Ay As Ag

Or;timalrparemhesization: ((A1(A2A43))((A4A5)As))

Aside: More on Optimal Substructure

» The shortest path problem is to find a

@—c shortest path between two nodes in a

graph
» The longest simple path problem is to
e—o find a longest simple path between two

nodes in a graph
» Does the shortest path problem have optimal
substructure? Explain
» What about longest simple path?

Longest Common Subsequence

» Sequence Z = (zy, 2o, ..., z) is a subsequence of

another sequence X = (xq, X, ..., Xm) if there is a strictly
increasing sequence (is, .. ., ix) of indices of X such that
forallj = 1,....,k,x,-l, =2z

» l.e., as one reads through Z, one can find a match to each
symbol of Z in X, in order (though not necessarily
contiguous)

» E.g.,Z=(B,C,D,B) is a subsequence of
X=(AB,C,B,D,A B) since z; = X, Zo = X3, Z3 = Xs,
and z4 = x7

» Zis a common subsequence of X and Y ifitis a
subsequence of both

» The goal of the longest common subsequence problem
is to find a maximum-length common subsequence (LCS)
of sequences X = (xq,X2,...,Xm) and Y = (y1,¥2,...,¥n)



Step 1: Characterizing Structure of Optimal Solution Step 2: Recursively Defining Value of Optimal Solution

» Given sequence X = (x1, ..., Xm), the ith prefix of X is

Xi = (x1,.... X) » The theorem implies the kinds of subproblems that we'll
> Theorem If X = (xi,...,Xm) and Y = (y1,...,yn) have investigate to find LCS of X = (xi,. .., Xm) and

LCS Z = (zy,..., Z), then Y =01 Vo)

1. Xm = Yn = Zx = Xm = Yn and Zx_4 is LCS of X;,—1 and Y,_4

v

If Xm = yn, then find LCS of X,_1 and Y,_; and append xp,

> If zx # xm, can lengthen Z, = contradiction (=yn)toit
> If Z_1 not LCS of X and ¥,_, then a longer CS of Xm_1 If Xm # ¥, then find LCS of X and Y,_; and find LCS of
and Y,_1 could have x, appended to it to get CS of X and Y Xm_1 and Y and identify the longest one

that is longer than Z, = contradiction o
2. If X # yn, then zx # x,, implies that Z is an LCS of X,_1 Let c[i, /] = length of LCS of X; and Y;

v

v

and Y
> |f zx # xm, then Z is a CS of X,,_1 and Y. Any CS of X;_+ 0 ifi=0o0rj=0
and Y that is Iongler'than Z would also be a longer CS for X cli,j] = cli—1,j—1]+1 ifi,j>0and x; = Y
and Y, = contradiction max(c[i7j _ 1]7 C[i _ 171-]) ifi,j > 0and x; £ ¥
3. If Xm # yn, then zx # y, implies that Z is an LCS of X and
Yn-1
» Similar argument to (2) O
Step 3: LCS-Length(X, Y, m, n) Example

X =(A,B,C,B,D,AB),Y =(B,D,C,A B,A
1 pllocate b[1...m,1...njand c[0...m,0...n];
2 |nitialize ¢[i,0] =0and ¢[0,/]=0V0<i<mand0< <n; j 0 1 2 3 4 5 6
3 fori=1tomdo .
4 forj=1tondo i yy B D C A B A
5 if x; == y; then
6 ‘ cli,f=cli—1,j—1]+1; 0 x| of ol ol of ol ol o
, bl =N LA N AN e D
8 else if c[i — 1,/] > cl[i,j — 1] then 0l 0] O] 1|<1] 1
: ‘ b 2 @ 0\1 S U | 1\2 2
10 bli, 1 ="1"; 1R 1
" else 3@\ o 1| 1l ofea| 2] 2
12 cli.j]=cli,j—11; . @ ~ T 1 1%
13 bli,jl="«"; 0 | 1 2 2 3[<3
u || end s oo 1 1 T ]
15 end 6 @ T TN TIN
16 return (c,b); 0 \l % % ; \3 éTl

7B ol il 2] 2| 3] 4

What is the time complexity?

Step 4: Constructing Optimal Solution from Computed Print-LCS(b, X, i,j)
Information

1 ifi==0o0rj==0then
» Length of LCS is stored in ¢[m, n] 2 \ r'eturn ;
) - 3 fif b[i,j] == “~\. " then

» To print LCS, start at b[m, n] and follow arrows until in row . PRINT-LCS(b, X,i —1,j— 1) ;

or column 0 s|| printx;
> Ifin cell (/, /) on this path, when x; = y; (i.e., when arrow is s else if b[i,j] == “1 " then

“K7), print x; as part of the LCS 7 || PRINT-LCS(b,X,i—1,j);
» This will print LCS backwards 8 lelse PRINT-LCS(b, X,i,j—1);

What is the time complexity?



Example Optimal Binary Search Trees

X = (A,B,C,B,D,A,B), Y = (B,D,C,A, B, A), prints “BCBA" » Goal is to construct binary search trees such that most
Tl R frequently sought values are near the root, thus minimizing

expected search time

joo 1234506 » Given a sequence K = (ki, ..., k,) of ndistinct keys in
i y ® p © A ® @A sorted order
0 x » Key k; has probability p; that it will be sought on a
il ol ol ol ol ol o 0 .
AEEIEEIN N particular search
ba 0l o] o] iler] » To handle searches for values not in K, have n+ 1 dummy
2 ®| \1 1l T \2 s keys dp, d, . .., dn to serve as the tree’s leaves
3 @ T TN 1 » Dummy key d; will be reached with probability g;
- ol 1 1[ojed] 2| 2 o ;
[ 1] 1| 1R » If depthy(k;) is distance from root of k; in tree T, then
4 B o i 1| 2| 2] 3]s expected search cost of T is
s » TN T T T
AR 1 S depth (K S depthr(d]
o 7 i dept i i deptl i
6 @] o 1| 2| 2| 3] 34 +Zp, pihr( ’”.Zq’ pthy(ci)
7 B NIREREN = =0
0l 11 21 2] 31 4 » An optimal binary search tree is one with minimum
expected search cost
Optimal Binary Search Trees (2) Step 1: Characterizing Structure of Optimal Solution
, » Observation: Since K is sorted and dummy keys
1o 2 8 4 O int din ord btree of a BST must contai
o 045 0.10 0.05 040 020 interspersed in order, any subtree of a must contain
g | 005 010 005 005 005 0.10 keys in a contiguous range k;, ..., k; and have leaves
di71 PR dj
» Thus, if an optimal BST T has a subtree T’ over keys
ki, ..., kj, then T" is optimal for the subproblem consisting

of only the keys k;, ..., k;
» If T" weren’t optimal, then a lower-cost subtree could
replace T’ in T, = contradiction

» Given keys k;, ..., kj, say that its optimal BST roots at k; for
somei<r<j
» Thus if we make right choice for k, and optimally solve the

problem for k;, ..., kr_1 (with dummy keys d;_+,...,d;_1)
() (b) and the problem for k4, ..., ki (with dummy keys
expected cost = 2.80 expected cost = 2.75 (optimal) dr, ..., d;), we'llend up with an optimal solution

» Since we don’t know optimal k;, we’ll try them all

Step 2: Recursively Defining Value of Optimal Solution Recursively Defining Value of Optimal Solution (2)
» Define €[i, ] as the expected cost of searching an optimal
BST built on keys k;, ..., k » Note that
» If j =i — 1, then there is only the dummy key d;_4, so . . .
eli,i—1] = qi_1 w(i,j)=w(i,r=1)+pr+w(r+1,))
» If j > i, then choose root k. from k;, ..., k; and optimally » Thus we can condense the equation to
solve subprc?b.lems ki, .. ..,k,_1 and Kryq,...,k; eli.j] = eli,r — 1] + e[r + 1,j] + w(i, ))
» When combining the optimal trees from subproblems and » Finally, since we don’t know what k, should be, we try them
making them children of k;, we increase their depth by 1, all:
which increases the cost of each by the sum of the
probabilities of its nodes efi, /] = { 9i—1 ' . o =it
» Define w(i,j) = >_;pc + 32_; 4 qv as the sum of ' mini<,<i{efl,r =]+ elr+ 1, ]+ w(i.j)} iti<]
er']c:jbgghnes of the nodes in the subtree built on k;, ..., kj, » Will also maintain table root[i, j] = index r for which k; is

root of an optimal BST on keys kj, . .., k;
eli,jl = pr+(eli, r=1]+w(i, r=1))+(elr+1,j]+w(r+1,))



Step 3: Optimal-BST(p, g, n) Example

[T 0o 7 2 3 [ 5]

Pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

1 pllocate e[1...n+1,0...n,w[1...n+1,0...n),and root[1...n,1...n]; ¢ w

2 Jnitialize e[i,i — 1] = w[i,i—1] =g _1 V1 <i<n+1;

3 for¢ =1tondo

4 fori=1ton—¢+1do

s j=it+e—1;

6 eli,jl=o0;

7 wli, f = wli,j =11+ pj + q; 3

8 forr =itojdo

9 t=eli,r —1]+e[r+1,7]1+ wli,j;

10 if t < e[i, ] then

1" eli,l=t;

12 rooti,jl = r; oot

13 end

14 end

15 end

16 feturn (e, root)

What is the time complexity?




