Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 02 — Medians and Order Statistics (Chapter 9)

Stephen Scott and Vinod Variyam
Introduction

- Given an array A of n distinct numbers, the ith order statistic of A is its ith smallest element
 - $i = 1 \Rightarrow$ minimum
 - $i = n \Rightarrow$ maximum
 - $i = \lceil (n + 1)/2 \rceil \Rightarrow$ (lower) median
- E.g. if $A = [8, 5, 3, 10, 4, 12, 6]$ then min = 3, max = 12, median = 6, 3rd order stat = 5
- **Problem**: Given array A of n elements and a number $i \in \{1, \ldots, n\}$, find the ith order statistic of A
- There is an obvious solution to this problem. What is it? What is its time complexity?
 - Can we do better? What if we only focus on $i = 1$ or $i = n$?
Minimum(A)

```
1  small = A[1] ;
2  for i = 2 to n do
3      if small > A[i] then
4          small = A[i] ;
5  end
6  return small ;
```
Efficiency of Minimum(A)

- Loop is executed $n - 1$ times, each with one comparison
 \[\Rightarrow \text{Total } n - 1 \text{ comparisons} \]
- Can we do better? **NO!**
- **Lower Bound:** Any algorithm finding minimum of n elements will need at least $n - 1$ comparisons
 - Proof of this comes from fact that no element of A can be considered for elimination as the minimum until it’s been shown to be greater than at least one other element
 - Imagine that all elements still eligible to be smallest are in a bucket, and are removed only after it is shown to be $>$ some other element
 - Since each comparison removes at most one element from the bucket, at least $n - 1$ comparisons are needed to remove all but one from the bucket
Correctness of Minimum(A)

- Observe that the algorithm always maintains the invariant that at the end of each loop iteration, $small$ holds the minimum of $A[1 \cdots i]$
 - Easily shown by induction
- Correctness follows by observing that $i == n$ before return statement
Simultaneous Minimum and Maximum

- Given array A with n elements, find both its minimum and maximum.
- What is the obvious algorithm? What is its (non-asymptotic) time complexity?
- Can we do better?
MinAndMax(A, n)

```plaintext
3. for $i = 2$ to $\lfloor n/2 \rfloor$ do
   4.     large = max(large, max($A[2i-1], A[2i]$)) ;
   5.     small = min(small, min($A[2i-1], A[2i]$)) ;
4. end
5. if $n$ is odd then
6.     large = max(large, $A[n]$) ;
7.     small = min(small, $A[n]$) ;
8. return (large, small) ;
```

Explanation of MinAndMax

- Idea: For each pair of values examined in the loop, compare them directly.
- For each such pair, compare the smaller one to small and the larger one to large.
- Example: $A = [8, 5, 3, 10, 4, 12, 6]$
 - Initialization: $large = 8$, $small = 5$
 - Compare 3 to 10: $large = \max(8, 10) = 10$, $small = \min(5, 3) = 3$
 - Compare 4 to 12: $large = \max(10, 12) = 12$, $small = \min(3, 4) = 3$
 - Final: $large = \max(12, 6) = 12$, $small = \min(3, 6) = 3$
Efficiency of MinAndMax

- How many comparisons does MinAndMax make?
- Initialization on Lines 1 and 2 requires only one comparison
- Each iteration through the loop requires one comparison between $A[2i - 1]$ and $A[2i]$ and then one comparison to each of large and small, for a total of three
- Lines 8 and 9 require one comparison each
- Total is at most $1 + 3([n/2] - 1) + 2 \leq 3\lfloor n/2 \rfloor$, which is better than $2n - 3$ for finding minimum and maximum separately
Selection of the ith Smallest Value

- Now to the general problem: Given A and i, return the ith smallest value in A
- Obvious solution is sort and return ith element
- Time complexity is $\Theta(n \log n)$
- Can we do better?
Selection of the ith Smallest Value (2)

- New algorithm: Divide and conquer strategy
- Idea: Somehow discard a constant fraction of the current array after spending only linear time
 - If we do that, we’ll get a better time complexity
 - More on this later
- Which fraction do we discard?
Select(A, p, r, i)

1. if $p == r$ then
 1.1 return $A[p]$;
2. $q = \text{Partition}(A, p, r)$ // Like Partition in Quicksort;
3. $k = q - p + 1$ // Size of $A[p \cdots q]$;
4. if $i == k$ then
 4.1 return $A[q]$ // Pivot value is the answer;
5. else if $i < k$ then
 5.1 return $\text{Select}(A, p, q - 1, i)$ // Answer is in left subarray;
6. else
 6.1 return $\text{Select}(A, q + 1, r, i - k)$ // Answer is in right subarray;

Returns ith smallest element from $A[p \cdots r]$
What is Select Doing?

- Like in Quicksort, Select first calls Partition, which chooses a **pivot element** \(q \), then reorders \(A \) to put all elements \(< A[q] \) to the left of \(A[q] \) and all elements \(> A[q] \) to the right of \(A[q] \).

- E.g. if \(A = [1, 7, 5, 4, 2, 8, 6, 3] \) and pivot element is 5, then result is \(A' = [1, 4, 2, 3, 5, 7, 8, 6] \).

- If \(A[q] \) is the element we seek, then return it.

- If sought element is in left subarray, then recursively search it, and ignore right subarray.

- If sought element is in right subarray, then recursively search it, and ignore left subarray.
Partition(A, p, r)

1. $x = \text{ChoosePivotElement}(A, p, r)$ // Returns index of pivot
3. $i = p - 1$
4. for $j = p$ to $r - 1$ do
5. if $A[j] \leq A[r]$ then
6. $i = i + 1$
8. end
10. **return** $i + 1$

Chooses a pivot element and partitions $A[p \cdots r]$ around it
Partitioning the Array: Example (Fig 7.1)

Compare each element $A[j]$ to x ($= 4$) and swap with $A[i]$ if $A[j] \leq x$
Choosing a Pivot Element

- Choice of pivot element is critical to low time complexity
- Why?
- What is the best choice of pivot element to partition $A[p \cdots r]$?
Choosing a Pivot Element (2)

- Want to pivot on an element that it as close as possible to being the median
- Of course, we don’t know what that is
- Will do median of medians approach to select pivot element
Median of Medians

- Given (sub)array A of n elements, partition A into $m = \lceil n/5 \rceil$ groups of 5 elements each, and at most one other group with the remaining $n \mod 5$ elements
- Make an array $A' = [x_1, x_2, \ldots, x_{\lceil n/5 \rceil}]$, where x_i is median of group i, found by sorting (in constant time) group i
- Call Select(A', 1, $\lceil n/5 \rceil$, $\lfloor (\lceil n/5 \rceil + 1)/2 \rfloor$)
 - Let value returned be y
 - In linear time, scan $A[p \cdots r]$ and return y’s index i
 - Return i as result of ChoosePivotElement(A, p, r)
Outside of class, get with your team and work this example: Find the 4th smallest element of $A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]$.

Show results for each step of Select, Partition, and ChoosePivotElement.

Good practice for the quiz!
Time Complexity

- Key to time complexity analysis is lower bounding fraction of elements discarded at each recursive call to Select
- On next slide, medians and median (x) of medians are marked, arrows indicate what is guaranteed to be greater than what
- Since x is less than at least half of the other medians (ignoring group with < 5 elements and x’s group) and each of those medians is less than 2 elements, we get that the number of elements x is less than is at least

$$3 \left(\left\lfloor \frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor \right\rfloor - 2 \right) \geq \frac{3n}{10} - 6 \geq \frac{n}{4} \quad \text{(if } n \geq 120\text{)}$$

- Similar argument shows that at least $3n/10 - 6 \geq n/4$ elements are less than x
- Thus, if $n \geq 120$, each recursive call to Select is on at most $3n/4$ elements
Time Complexity (2)
Time Complexity (3)

▶ Develop **recurrence** describing Select’s time complexity
▶ Let $T(n)$ be total time for Select to run on input of size n
▶ Choosing a pivot element takes time $O(n)$ to split into size-5 groups and time $T(n/5)$ to recursively find the median of medians
▶ Once pivot element chosen, partitioning n elements takes $O(n)$ time
▶ Recursive call to Select takes time at most $T(3n/4)$
▶ Thus we get

$$T(n) \leq T(n/5) + T(3n/4) + O(n)$$

▶ Can express as $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha = 1/5$ and $\beta = 3/4$
▶ **Theorem:** For recurrences of the form $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha + \beta < 1$, $T(n) = O(n)$
▶ Thus Select has time complexity $O(n)$
Proof of Theorem

Top $T(n)$ takes $O(n)$ time ($= cn$ for some constant c). Then calls to $T(\alpha n)$ and $T(\beta n)$, which take a total of $(\alpha + \beta)cn$ time, and so on.

\[
\begin{align*}
\text{Summing these infinitely yields (since } \alpha + \beta < 1) \\
cn(1 + (\alpha + \beta) + (\alpha + \beta)^2 + \cdots) &= \frac{cn}{1 - (\alpha + \beta)} = c'n = O(n)
\end{align*}
\]
Another useful tool for analyzing recurrences

Theorem: Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T(n) \) be defined as
\[
T(n) = aT(n/b) + f(n).
\]
Then \(T(n) \) is bounded as follows.

1. If \(f(n) = O(n^{\log_b a - \epsilon}) \) for constant \(\epsilon > 0 \), then
 \[
 T(n) = \Theta(n^{\log_b a}).
 \]
2. If \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a \log n}) \)
3. If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for constant \(\epsilon > 0 \), and if
 \[
 af(n/b) \leq cf(n)
 \]
 for constant \(c < 1 \) and sufficiently large \(n \),
 then \(T(n) = \Theta(f(n)) \)

E.g. for Select, can apply theorem on
\[
T(n) < 2T(3n/4) + O(n) \text{ (note the slack introduced) with }
\]
\(a = 2, \ b = 4/3, \ \epsilon = 1.4 \) and get
\[
T(n) = O\left(n^{\log_{4/3} 2}\right) = O\left(n^{2.41}\right)
\]
⇒ Not as tight for this recurrence