DESIGN AND ANALYSIS OF ALGORITHMS

Homework 3 (CSCE 423/823, FaLL 2019)
Assigned November 4, 2019

Due November 13, 2019 on Canvas

CSCE 823 students have to do all problems for full credit. CSCE 423 students need to do only the
Core Problems for full credit, and may do the Advanced Problem for bonus points.

For this homework assignment, you are to work in the team that you established in Homework 0.
This will be your collaborative team for the rest of the term. You may freely discuss solutions to
exercises within your team, and you are to submit a single pdf file from your team. The internet
is not an allowed resource on this homework!

Clarity of presentation is important. You should give a clear description of all your algorithms,
each with a proof of correctness and analysis of time complexity. You must submit your solutions
in a single pdf file via Canvas, and are encouraged to prepare your solutions in KTEX. Only pdf
will be accepted, and you should submit only one pdf file for Questions 2-5. When you submit for
Question 1, submit a second pdf file to the Questions assignment in Canvas.

Core Problems

1. (bonus points, but mandatory submission) Present one question that you have on the
lectures and /or textbook on either MSTs or single-source shortest paths. This question should
be thoughtful and nontrivial, and suggest depth of knowledge in the material. Also, present
what you consider to be a reasonable (doesn’t have to be completely correct) answer to this
problem.

Your question and answer should be submitted to the Questions assignment in Canvas in a
pdf file separate from the rest of your homework submission.

2. (25 points) In studying for your final exam, you perused a tutorial on Dijkstra’s algorithm
that argued a different proof of correctness than was described in the textbook. Specifically,
this proof argued that Dijkstra’s algorithm is correct because it relaxes the edges of every
shortest path in the order in which they appear on the path, which, if true, we already know
would guarantee correctness due to the path-relaxation property (similar to the argument of
correctness of the dag shortest path algorithm). However, since you understand the internet
well, you realize that you shouldn’t trust this argument without first verifying it. Turns out
your instincts were correct and the tutorial’s proof was wrong. Prove that the proof is wrong
by presenting a directed, weighted graph for which Dijkstra’s algorithm could relax the edges
of a shortest path out of order.

3. (25 points) Imagine that you want to implement Kruskal’s algorithm, but you forgot the
API to the programming library’s sorting algorithm. Your friend Elliot Alderson insists that
you don’t need to worry: that Kruskal’s algorithm traversing the edges in any order will work.
Is Elliot correct? Prove your answer.

4. (40 points) You are playing a game on an N x N grid of numbers. Whatever square your
game piece is on, you may move it to an adjacent square only by moving horizontally or
vertically, i.e., you may not make any diagonal moves. With every move, you lose a number
of points that is equal to the absolute difference of numbers of the two adjacent squares.



(a) Develop an algorithm to find a series of moves that loses the minimum number of points
when you start at square (1,1) and end at square (N, N). Your algorithm should have
worst-case time complexity polynomial in N. Analyze the running time of your algorithm
and argue its correctness.

(b) Show how your algorithm can be generalized to an M-dimensional grid N X N X N x - - - X
N. Your game piece will initially be placed at (1,1,...,1) and end at (N, N,...,N).
How does the time complexity of your algorithm change?

Advanced Problem

. (40 Points) Let G = (V, E) be a directed graph with weight function w : £ — R. The
conductance of a path p is defined as f(p) = min.c,w(e). Le., a path’s conductance is the
minimum weight of its edges. Similar to the ¢ notation in the class notes, we define the
maximum path conductance from u to v to be

[ max{B(p) : uS v} if there is a path from u to v
FY(ua U) - .
—00 otherwise

Give an efficient algorithm that computes a path of maximum conductance from a given
vertex s to another vertex v. KE.g., if there are two paths from s to v, where Path 1 has
edge weights —1, —2, —3 and Path 2 has edge weights —4, 10, 20, then Path 1 has conductance
—3 and Path 2 has conductance —4, so Path 1 has the maximum conductance. Argue your
algorithm’s correctness and its time complexity.



