Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 09 — Lower Bounds (Sections 8.1 and 33.3)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

Remember when ...

... I said: "Upper Bound of an Algorithm"

- An algorithm A has an upper bound of f(n) for input of size n if there exists no input of size n such that A requires more than f(n) time
- E.g., we know from prior courses that Quicksort and Bubblesort take no more time than O(n²), while Mergesort has an upper bound of O(n log n)

... I said: "Upper Bound of a Problem"

- A problem has an upper bound of f(n) if there exists at least one algorithm that has an upper bound of f(n)
 - ► I.e., there exists an algorithm with time/space complexity of at most f(n) on all inputs of size n
- E.g., since algorithm Mergesort has worst-case time complexity of O(n log n), the problem of sorting has an upper bound of O(n log n)

Remember when ...

... I said: "Lower Bound of a Problem"

- ► A problem has a **lower bound** of f(n) if, for **any** algorithm A to solve the problem, there exists **at least one** input of size n that forces A to take at least f(n) time/space
- This pathological input depends on the specific algorithm A
- ► E.g., reverse order forces Bubblesort to take $\Omega(n^2)$ steps
- Since every sorting algorithm has an input of size *n* forcing Ω(*n* log *n*) steps, sorting problem has time complexity lower bound of Ω(*n* log *n*)
- To argue a lower bound for a problem, can use an adversarial argument: An algorithm that simulates arbitrary algorithm A to build a pathological input
 - Needs to be in some general (algorithmic) form since the nature of the pathological input depends on the specific algorithm A

- Adversary has unlimited computing resources
- Can also reduce one problem to another to establish lower bounds

Comparison-Based Sorting Algorithms

- Our lower bound applies only to comparison-based sorting algorithms
 - The sorted order it determines is based only on comparisons between the input elements
 - ► E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort
- What is not a comparison-based sorting algorithm?
 - The sorted order it determines is based on additional information, e.g., bounds on the range of input values

A D F A B F A B F A B F B - のへの

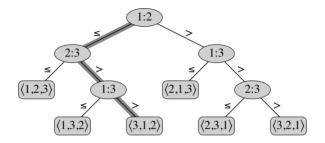
4/13

• E.g., Counting Sort, Radix Sort

Decision Trees

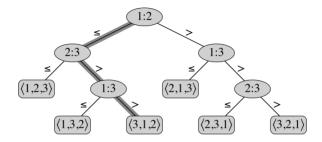
- A decision tree is a full binary tree that represents comparisions between elements performed by a particular sorting algorithm operating on a certain-sized input (n elements)
- Key point: a tree represents an algorithm's behavior on all possible inputs of size n
 - Thus, an adversarial argument could use such a tree to choose a pathological input
- > Each internal node represents one comparison made by algorithm
 - ▶ Each node labeled as i : j, which represents comparison $A[i] \le A[j]$
 - ► If, in the particular input, it is the case that A[i] ≤ A[j], then control flow moves to left child, otherwise to the right child
 - Each leaf represents a possible output of the algorithm, which is a permutation of the input
 - All permutations must be in the tree in order for algorithm to work properly

Example for Insertion Sort



- If n = 3, Insertion Sort first compares A[1] to A[2]
- If $A[1] \leq A[2]$, then compare A[2] to A[3]
- ▶ If *A*[2] > *A*[3], then compare *A*[1] to *A*[3]
- If $A[1] \leq A[3]$, then sorted order is A[1], A[3], A[2]

Example for Insertion Sort (2)



- ► Example: *A* = [7, 8, 4]
- First compare 7 to 8, then 8 to 4, then 7 to 4
- Output permutation is (3, 1, 2), which implies sorted order is 4, 7, 8
- What are worst-case inputs for this algorithm? What are not?

Proof of Lower Bound

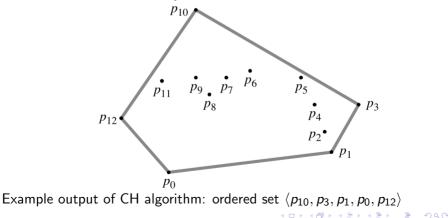
- Length of path from root to output leaf is number of comparisons made by algorithm on that input
- Worst-case number of comparisons = length of longest path = height h
- \Rightarrow Adversary chooses a deepest leaf to create worst-case input
- Number of leaves in tree is n! = number of outputs (permutations)
- A binary tree of height h has at most 2^h leaves
- Thus we have $2^h \ge n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- Take base-2 logs of both sides to get

$$h \ge \lg \sqrt{2\pi} + (1/2) \lg n + n \lg n - n \lg e = \Omega(n \log n)$$

- ⇒ **Every** comparison-based sorting algorithm has **some** input that forces it to make $\Omega(n \log n)$ comparisons
- ⇒ Mergesort and Heapsort are *asymptotically optimal*

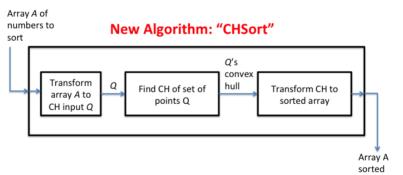
Another Lower Bound: Convex Hull

- Use sorting lower bound to get lower bound on **convex hull** problem:
 - ▶ Given a set Q = {p₁, p₂,..., p_n} of n points, each from ℝ², output CH(Q), which is the smallest convex polygon P such that each point from Q is on P's boundary or in its interior



Another Lower Bound: Convex Hull (2)

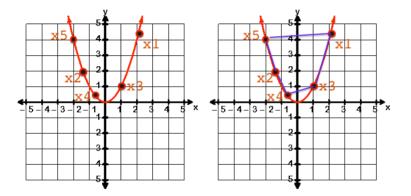
- We will **reduce** the problem of sorting to that of finding a convex hull
- ► I.e., given any instance of the sorting problem A = {x₁,...,x_n}, we will transform it to an instance of convex hull such that the time complexity of the new algorithm sorting will be no more than that of convex hull



► The reduction: transform A to $Q = \{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2)\}$ ⇒ Takes O(n) time Another Lower Bound: Convex Hull (3)

E.g.,
$$A = \{2.1, -1.4, 1.0, -0.7, -2.0\},\$$

CH(Q) = $\langle (-1.4, 1.96), (-2, 4), (2.1, 4.41), (1, 1), (-0.7, 0.49) \rangle$



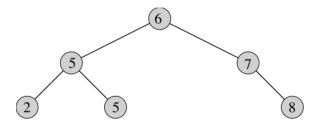
- Since the points in Q are on a parabola, all points of Q are on CH(Q)
- ► How can we get a sorted version of A from this?

Another Lower Bound: Convex Hull (4)

- CHSort yields a sorted list of points from (any) A
- Time complexity of CHSort: time to transform A to Q + time to find CH of Q + time to read sorted list from CH
- \Rightarrow O(n)+ time to find CH +O(n)
- ▶ If time for convex hull is $o(n \log n)$, then sorting is $o(n \log n)$
 - \Rightarrow Since that cannot happen, we know that convex hull is $\Omega(n \log n)$

In-Class Team Exercise

- > A binary search tree (BST) has a key value at each node
- For any node x in the tree, the key values of all nodes in x's left subtree are ≤ x, and the key values of all nodes in x's right subtree are ≥ x



Prove that, given an unsorted array A of n elements, the time required to build a BST is Ω(n log n) in the worst case