
1/22

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

2/22

Introduction

I Similar to SSSP, but find shortest paths for all pairs of vertices

I Given a weighted, directed graph G = (V ,E) with weight function
w : E → R, find δ(u, v) for all (u, v) ∈ V × V

I One solution: Run an algorithm for SSSP |V | times, treating each vertex
in V as a source

I If no negative weight edges, use Dijkstra’s algorithm, for time complexity
of O(|V |3 + |V ||E |) = O(|V |3) for array implementation,
O(|V ||E | log |V |) if heap used

I If negative weight edges, use Bellman-Ford and get O(|V |2|E |) time
algorithm, which is O(|V |4) if graph dense

I Can we do better?
I Matrix multiplication-style algorithm: Θ(|V |3 log |V |)
I Floyd-Warshall algorithm: Θ(|V |3)
I Both algorithms handle negative weight edges

3/22

Adjacency Matrix Representation

I Will use adjacency matrix representation

I Assume vertices are numbered: V = {1, 2, . . . , n}
I Input to our algorithms will be n × n matrix W :

wij =

0 if i = j
weight of edge (i , j) if (i , j) ∈ E
∞ if (i , j) 6∈ E

I For now, assume negative weight cycles are absent
I In addition to distance matrices L and D produced by algorithms, can

also build predecessor matrix Π, where πij = predecessor of j on a
shortest path from i to j , or nil if i = j or no path exists

I Well-defined due to optimal substructure property

4/22

Print-All-Pairs-Shortest-Path(Π, i , j)

1 if i == j then
2 print i

3 else if πij == nil then
4 print “no path from ” i “ to ” j “ exists”

5 else
6 Print-All-Pairs-Shortest-Path(Π, i , πij)

7 print j

8

5/22

Shortest Paths and Matrix Multiplication

I Will maintain a series of matrices L(m) =
(
`
(m)
ij

)
, where `

(m)
ij = the

minimum weight of any path from i to j that uses at most m edges

I Special case: `
(0)
ij = 0 if i = j , ∞ otherwise

`
(0)
13 =∞, `

(1)
13 = 8, `

(2)
13 = 7

6/22

Recursive Solution

I Exploit optimal substructure property to get a recursive definition of `
(m)
ij

I To follow shortest path from i to j using at most m edges, either:

1. Take shortest path from i to j using ≤ m − 1 edges and stay put, or
2. Take shortest path from i to some k using ≤ m − 1 edges and traverse

edge (k, j)

`
(m)
ij = min

(
`
(m−1)
ij , min

1≤k≤n

(
`
(m−1)
ik + wkj

))
I Since wjj = 0 for all j , simplify to

`
(m)
ij = min

1≤k≤n

(
`
(m−1)
ik + wkj

)
I If no negative weight cycles, then since all shortest paths have ≤ n − 1

edges,

δ(i , j) = `
(n−1)
ij = `

(n)
ij = `

(n+1)
ij = · · ·

7/22

Bottum-Up Computation of L Matrices

I Start with weight matrix W and compute series of matrices
L(1), L(2), . . . , L(n−1)

I Core of the algorithm is a routine to compute L(m+1) given L(m) and W

I Start with L(1) = W , and iteratively compute new L matrices until we
get L(n−1)

I Why is L(1) == W ?

I Can we detect negative-weight cycles with this algorithm? How?

8/22

Extend-Shortest-Paths(L,W)

1 n = number of rows of L // This is L(m)

2 create new n × n matrix L′ // This will be L(m+1)

3 for i = 1 to n do
4 for j = 1 to n do
5 `′ij =∞
6 for k = 1 to n do
7 `′ij = min

(
`′ij , `ik + wkj

)
8 end

9 end

10 end

11 return L′

9/22

Slow-All-Pairs-Shortest-Paths(W)

1 n = number of rows of W

2 L(1) = W

3 for m = 2 to n − 1 do

4 L(m) = Extend-Shortest-Paths(L(m−1),W)

5 end

6 return L(n−1)

10/22

Example

11/22

Improving Running Time

I What is time complexity of Slow-All-Pairs-Shortest-Paths?

I Can we do better?

I Note that if, in Extend-Shortest-Paths, we change + to
multiplication and min to +, get matrix multiplication of L and W

I If we let � represent this “multiplication” operator, then
Slow-All-Pairs-Shortest-Paths computes

L(2) = L(1) �W = W 2© ,

L(3) = L(2) �W = W 3© ,
...

L(n−1) = L(n−2) �W = W n −©1

I Thus, we get L(n−1) by iteratively “multiplying” W via
Extend-Shortest-Paths

12/22

Improving Running Time (2)

I But we don’t need every L(m); we only want L(n−1)

I E.g., if we want to compute 764, we could multiply 7 by itself 64 times,
or we could square it 6 times

I In our application, once we have a handle on L((n−1)/2), we can
immediately get L(n−1) from one call to
Extend-Shortest-Paths(L((n−1)/2), L((n−1)/2))

I Of course, we can similarly get L((n−1)/2) from “squaring” L((n−1)/4),
and so on

I Starting from the beginning, we initialize L(1) = W , then compute
L(2) = L(1) � L(1), L(4) = L(2) � L(2), L(8) = L(4) � L(4), and so on

I What happens if n − 1 is not a power of 2 and we “overshoot” it?

I How many steps of repeated squaring do we need to make?

I What is time complexity of this new algorithm?

13/22

Faster-All-Pairs-Shortest-Paths(W)

1 n = number of rows of W

2 L(1) = W

3 m = 1

4 while m < n − 1 do
5 L(2m) = Extend-Shortest-Paths(L(m), L(m))

6 m = 2m

7 end

8 return L(m)

14/22

Floyd-Warshall Algorithm

I Shaves the logarithmic factor off of the previous algorithm

I As with previous algorithm, start by assuming that there are no negative
weight cycles; can detect negative weight cycles the same way as before

I Considers a different way to decompose shortest paths, based on the
notion of an intermediate vertex

I If simple path p = 〈v1, v2, v3, . . . , v`−1, v`〉, then the set of intermediate
vertices is {v2, v3, . . . , v`−1}

15/22

Structure of Shortest Path

I Again, let V = {1, . . . , n}, and fix i , j ∈ V

I For some 1 ≤ k ≤ n, consider set of vertices Vk = {1, . . . , k}
I Now consider all paths from i to j whose intermediate vertices come

from Vk and let p be a minimum-weight path from them
I Is k ∈ p?

1. If not, then all intermediate vertices of p are in Vk−1, and a SP from i to j
based on Vk−1 is also a SP from i to j based on Vk

2. If so, then we can decompose p into i
p1 k

p2 j , where p1 and p2 are each
shortest paths based on Vk−1

16/22

Structure of Shortest Path (2)

17/22

Recursive Solution

I What does this mean?

I It means that a shortest path from i to j based on Vk is either going to
be the same as that based on Vk−1, or it is going to go through k

I In the latter case, a shortest path from i to j based on Vk is going to be
a shortest path from i to k based on Vk−1, followed by a shortest path
from k to j based on Vk−1

I Let matrix D(k) =
(
d
(k)
ij

)
, where d

(k)
ij = weight of a shortest path from

i to j based on Vk :

d
(k)
ij =

{
wij if k = 0

min
(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
if k ≥ 1

I Since all SPs are based on Vn = V , we get d
(n)
ij = δ(i , j) for all i , j ∈ V

18/22

Floyd-Warshall(W)

1 n = number of rows of W

2 D(0) = W

3 for k = 1 to n do
4 for i = 1 to n do
5 for j = 1 to n do

6 d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
7 end

8 end

9 end

10 return D(n)

19/22

Transitive Closure

I Used to determine whether paths exist between pairs of vertices

I Given directed, unweighted graph G = (V ,E) where V = {1, . . . , n},
the transitive closure of G is G ∗ = (V ,E ∗), where

E ∗ = {(i , j) : there is a path from i to j in G}

I How can we directly apply Floyd-Warshall to find E ∗?

I Simpler way: Define matrix T similarly to D:

t
(0)
ij =

{
0 if i 6= j and (i , j) 6∈ E
1 if i = j or (i , j) ∈ E

t
(k)
ij = t

(k−1)
ij ∨

(
t
(k−1)
ik ∧ t

(k−1)
kj

)
I I.e., you can reach j from i using Vk if you can do so using Vk−1 or if

you can reach k from i and reach j from k , both using Vk−1

20/22

Transitive-Closure(G)

1 allocate and initialize n × n matrix T (0)

2 for k = 1 to n do
3 allocate n × n matrix T (k)

4 for i = 1 to n do
5 for j = 1 to n do

6 t
(k)
ij = t

(k−1)
ij ∨ t

(k−1)
ik ∧ t

(k−1)
kj

7 end

8 end

9 end

10 return T (n)

21/22

Example

22/22

Analysis

I Like Floyd-Warshall, time complexity is officially Θ(n3)

I However, use of 0s and 1s exclusively allows implementations to use
bitwise operations to speed things up significantly, processing bits in
batch, a word at a time

I Also saves space

I Another space saver: Can update the T matrix (and F-W’s D matrix) in
place rather than allocating a new matrix for each step (Exercise 25.2-4)

	Introduction
	Shortest Paths and Matrix Multiplication
	Recursive Solution
	Bottom-Up Computation
	Example
	Improving Running Time

	Floyd-Warshall Algorithm
	Structure of Shortest Path
	Recursive Solution
	Bottom-Up Computation
	Transitive Closure

