Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

Introduction

- ▶ Similar to SSSP, but find shortest paths for all pairs of vertices
- ▶ Given a weighted, directed graph G = (V, E) with weight function $w: E \to \mathbb{R}$, find $\delta(u, v)$ for all $(u, v) \in V \times V$
- ▶ One solution: Run an algorithm for SSSP |V| times, treating each vertex in V as a source
 - ▶ If no negative weight edges, use Dijkstra's algorithm, for time complexity of $O(|V|^3 + |V||E|) = O(|V|^3)$ for array implementation, $O(|V||E|\log|V|)$ if heap used
 - If negative weight edges, use Bellman-Ford and get $O(|V|^2|E|)$ time algorithm, which is $O(|V|^4)$ if graph dense
- ► Can we do better?
 - ▶ Matrix multiplication-style algorithm: $\Theta(|V|^3 \log |V|)$
 - ▶ Floyd-Warshall algorithm: $\Theta(|V|^3)$
 - ▶ Both algorithms handle negative weight edges

Adjacency Matrix Representation

- ▶ Will use adjacency matrix representation
- Assume vertices are numbered: $V = \{1, 2, ..., n\}$
- ▶ Input to our algorithms will be $n \times n$ matrix W:

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i, j) & \text{if } (i, j) \in E \\ \infty & \text{if } (i, j) \notin E \end{cases}$$

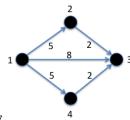
- ▶ For now, assume negative weight cycles are absent
- ightharpoonup In addition to distance matrices L and D produced by algorithms, can also build $\textit{predecessor matrix} \ \Pi, \ \text{where} \ \pi_{ij} = \text{predecessor of} \ j \ \text{on a}$ shortest path from i to j, or NIL if i = j or no path exists
 - Well-defined due to optimal substructure property

Print-All-Pairs-Shortest-Path (Π, i, j)

```
2 print i
3 else if \pi_{ij} == \text{NIL} then
   print "no path from " i " to " j " exists"
      Print-All-Pairs-Shortest-Path(\Pi, i, \pi_{ij})
      print i
```


Shortest Paths and Matrix Multiplication

- ▶ Will maintain a series of matrices $L^{(m)} = \left(\ell_{ij}^{(m)}\right)$, where $\ell_{ij}^{(m)} = \text{the minimum weight of any path from } i \text{ to } j \text{ that uses at most } m \text{ edges}$
 - ▶ Special case: $\ell_{ii}^{(0)} = 0$ if i = j, ∞ otherwise



$$\ell_{13}^{(0)} = \infty, \ \ell_{13}^{(1)} = 8, \ \ell_{13}^{(2)} = 7$$

Recursive Solution

- lacktriangle Exploit optimal substructure property to get a recursive definition of $\ell_{ii}^{(m)}$
- ▶ To follow shortest path from *i* to *j* using at most *m* edges, either:
 - 1. Take shortest path from i to j using $\leq m-1$ edges and stay put, or
 - 2. Take shortest path from i to some k using $\leq m-1$ edges and traverse

$$\ell_{ij}^{(m)} = \min\left(\ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj}\right)\right)$$

▶ Since $w_{jj} = 0$ for all j, simplify to

$$\ell_{ij}^{(m)} = \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)$$

▶ If no negative weight cycles, then since all shortest paths have $\leq n-1$ edges,

$$\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \cdots$$

Bottum-Up Computation of L Matrices

- ▶ Start with weight matrix W and compute series of matrices $L^{(1)}, L^{(2)}, \dots, L^{(n-1)}$
- ▶ Core of the algorithm is a routine to compute $L^{(m+1)}$ given $L^{(m)}$ and W
- ▶ Start with $L^{(1)} = W$, and iteratively compute new L matrices until we get $L^{(n-1)}$
 - Why is $L^{(1)} == W$?
- ► Can we detect negative-weight cycles with this algorithm? How?

<□ > <□ > <□ > <≥ > <≥ > < ≥ < > < 7/22

Extend-Shortest-Paths(L, W)

```
\begin{array}{|c|c|c|c|}\hline & 1 & n = \text{number of rows of } L & // & \text{This is } L^{(m)} \\ & 2 & \text{create new } n \times n \text{ matrix } L' & // & \text{This will be } L^{(m+1)} \\ & 3 & \text{for } i = 1 \text{ to } n \text{ do} \\ & 4 & \text{for } j = 1 \text{ to } n \text{ do} \\ & 5 & | \ell_{ij}^{c} = \infty \\ & 6 & \text{for } k = 1 \text{ to } n \text{ do} \\ & 7 & | \ell_{ij}^{c} = \min \left( \ell_{ij}^{c}, \ell_{ik} + w_{Nj} \right) \\ & 8 & | \text{end} \\ & 9 & \text{end} \\ & 10 & \text{end} \\ & 11 & \text{return } L' \\ \end{array}
```

4 D > 4 D > 4 E > 4 E > E +94 C

Slow-All-Pairs-Shortest-Paths (W)

```
1 n= number of rows of W

2 L^{(1)}=W

3 for m=2 to n-1 do

4 | L^{(m)}= EXTEND-SHORTEST-PATHS(L^{(m-1)},W)

5 end

6 return L^{(n-1)}
```


Example

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Improving Running Time

- ▶ What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?
- ► Can we do better?
- Note that if, in EXTEND-SHORTEST-PATHS, we change + to multiplication and min to +, get matrix multiplication of L and W
- ▶ If we let \odot represent this "multiplication" operator, then SLOW-ALL-PAIRS-SHORTEST-PATHS computes

▶ Thus, we get $L^{(n-1)}$ by iteratively "multiplying" W via EXTEND-SHORTEST-PATHS

iniplying 77 via

Improving Running Time (2)

- ▶ But we don't need every $L^{(m)}$; we only want $L^{(n-1)}$
- ► E.g., if we want to compute 7⁶⁴, we could multiply 7 by itself 64 times, or we could square it 6 times
- ▶ In our application, once we have a handle on $L^{((n-1)/2)}$, we can immediately get $L^{(n-1)}$ from one call to EXTEND-SHORTEST-PATHS($L^{((n-1)/2)}, L^{((n-1)/2)}$)
- ▶ Of course, we can similarly get $L^{((n-1)/2)}$ from "squaring" $L^{((n-1)/4)}$, and so on
- ▶ Starting from the beginning, we initialize $L^{(1)}=W$, then compute $L^{(2)}=L^{(1)}\odot L^{(1)}$, $L^{(4)}=L^{(2)}\odot L^{(2)}$, $L^{(8)}=L^{(4)}\odot L^{(4)}$, and so on
- ▶ What happens if n-1 is not a power of 2 and we "overshoot" it?
- ▶ How many steps of repeated squaring do we need to make?
- ▶ What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths(W)

Floyd-Warshall Algorithm

- ▶ Shaves the logarithmic factor off of the previous algorithm
- As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
- Considers a different way to decompose shortest paths, based on the notion of an intermediate vertex
 - ▶ If simple path $p = \langle v_1, v_2, v_3, \dots, v_{\ell-1}, v_\ell \rangle$, then the set of intermediate vertices is $\{v_2, v_3, \dots, v_{\ell-1}\}$

4D> 4B> 4E> 4E> E 990

Structure of Shortest Path

- ▶ Again, let $V = \{1, ..., n\}$, and fix $i, j \in V$
- ▶ For some $1 \le k \le n$, consider set of vertices $V_k = \{1, ..., k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be a minimum-weight path from them
- ▶ Is $k \in p$?
 - 1. If not, then all intermediate vertices of p are in V_{k-1} , and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 - 2. If so, then we can decompose p into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}

Structure of Shortest Path (2)

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

900 5 (5) (5) (0)

Recursive Solution

- ▶ What does this mean?
- ▶ It means that a shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1} , or it is going to go through k
- ▶ In the latter case, a shortest path from i to j based on V_k is going to be a shortest path from i to k based on V_{k-1} , followed by a shortest path from k to j based on V_{k-1}
- Let matrix $D^{(k)} = \left(d_{ij}^{(k)}\right)$, where $d_{ij}^{(k)} =$ weight of a shortest path from i to j based on V_k :

$$d_{ij}^{(k)} = \left\{ \begin{array}{l} w_{ij} & \text{if } k = 0 \\ \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \end{array} \right.$$

▶ Since all SPs are based on $V_n = V$, we get $d_{ij}^{(n)} = \delta(i,j)$ for all $i,j \in V$

Floyd-Warshall(W)

Transitive Closure

- ▶ Used to determine whether paths exist between pairs of vertices
- ▶ Given directed, unweighted graph G = (V, E) where $V = \{1, ..., n\}$, the *transitive closure* of G is $G^* = (V, E^*)$, where

$$E^* = \{(i,j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$$

- ▶ How can we directly apply Floyd-Warshall to find E*?
- ► Simpler way: Define matrix *T* similarly to *D*:

$$t_{ij}^{(0)} = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \text{ and } (i,j) \not \in E \\ 1 & \text{if } i = j \text{ or } (i,j) \in E \end{array} \right.$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee \left(t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)} \right)$$

▶ I.e., you can reach j from i using V_k if you can do so using V_{k-1} or if you can reach k from i and reach j from k, both using V_{k-1}

19/22

Transitive-Closure(G)

<□ > < Ø > < ≥ > < ≥ > ≥ < 20,

Example

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{pmatrix}$$

Analysis

- ▶ Like Floyd-Warshall, time complexity is officially $\Theta(n^3)$
- ► However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time
- Also saves space
- ► Another space saver: Can update the *T* matrix (and F-W's *D* matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4)

