Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

Adjacency Matrix Representation

v

Will use adjacency matrix representation
> Assume vertices are numbered: V ={1,2,...,n}

> Input to our algorithms will be n x n matrix W:

0 ifi=j
wjj = { weight of edge (i,j) if (i,j) € E
- if (i,)) & E

» For now, assume negative weight cycles are absent

> In addition to distance matrices L and D produced by algorithms, can
also build predecessor matrix I, where 7;; = predecessor of j on a
shortest path from i to j, or NIL if i = j or no path exists
> Well-defined due to optimal substructure property

Shortest Paths and Matrix Multiplication

» Will maintain a series of matrices L(M) = Zgj-m)), where Zgjm) = the

minimum weight of any path from i to j that uses at most m edges

» Special case: lf.jp) =0if i =, oo otherwise

2
13
6 =0,) =8, 63 =7 4

Introduction

v

v

Similar to SSSP, but find shortest paths for all pairs of vertices

Given a weighted, directed graph G = (V/, E) with weight function
w: E— R, find §(u,v) for all (u,v) e Vx V
One solution: Run an algorithm for SSSP |V/| times, treating each vertex
in V as a source
> If no negative weight edges, use Dijkstra’s algorithm, for time complexity
of O(|V|® + |V||E]) = O(|V|?) for array implementation,
O(|V||E|log |V]) if heap used
> If negative weight edges, use Bellman-Ford and get O(|V/[?|E|) time
algorithm, which is O(|V|*) if graph dense
Can we do better?
» Matrix multiplication-style algorithm: ©(|V|? log |V/)
> Floyd-Warshall algorithm: ©(|V/?)
» Both algorithms handle negative weight edges

Print-All-Pairs-Shortest-Path([T, 7, j)

1 if i == then

2 ‘ print i

3 else if 7 == NIL then

4 ‘ print “no path from " i "to" j " exists"

5 else

6 PRINT-ALL-PAIRS-SHORTEST-PATH(I, i, 7))
7 print j

8

Recursive Solution

v

Exploit optimal substructure property to get a recursive definition of Zf-jm)
To follow shortest path from / to j using at most m edges, either:

1. Take shortest path from i to j using < m — 1 edges and stay put, or
2. Take shortest path from i to some k using < m — 1 edges and traverse
edge (k,J)

m . m—1 . m—1
égj) = min (Efj)’12:2,1 (ng)4 ij))
Since wj; = 0 for all j, simplify to

(m) — i (m=1) .
4 = i, (507)

If no negative weight cycles, then since all shortest paths have < n—1

edges,

8(i) =D =6 = et = .

Bottum-Up Computation of L Matrices

» Start with weight matrix W and compute series of matrices

LW (@ -1

v

> Start with LD = W, and iteratively compute new L matrices until we

get L(n=1)
> Why is L) == W?

Core of the algorithm is a routine to compute L") given L(™) and W

» Can we detect negative-weight cycles with this algorithm? How?

Slow-All-Pairs-Shortest-Paths(W)

2 LW =w

3 for m=2ton—1do
4

5 end

6 return L("~V

1 n = number of rows of W

L™ = EXTEND-SHORTEST-PaTHS(L™ ™D, W)

Improving Running Time

» What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?

» Can we do better?

> Note that if, in EXTEND-SHORTEST-PATHS, we change + to
multiplication and min to 4, get matrix multiplication of L and W

v

1 =
1(3)

L(n—l)

Meow
(Aow

L= o w

If we let © represent this “multiplication” operator, then
SLOW-ALL-PAIRS-SHORTEST-PATHS computes

w® |
w® |

Wn@l

> Thus, we get L(™=1) by iteratively “multiplying” W via

EXTEND-SHORTEST-PATHS

Extend-Shortest-Paths(L, W)

1 n = number of rows of L // This is L™
> create new n x n matrix L' // This will be L™V
3 for i =1 to ndo
4 for j =1 tondo
Ly =00
for k =1 to n do
/f/ = min (Zf/-, ik + wk/-)
end

® ~ o o

9 end
10 end
1 return L'

Example

0 3 8 2 —4
3 0 -4 1 7
LP@=]c 4 05 1
2 -1 -5 0 -2
8 oo 1 6 0
0 1 -3 2 —4
3 0 -4 1 1
W=7 4 05 3
2 -1 -5 0 -2
8 5 1.6 0

Improving Running Time (2)

v

v

v

But we don’t need every L(™; we only want L("=1)

E.g., if we want to compute 7%*, we could multiply 7 by itself 64 times,
or we could square it 6 times

In our application, once we have a handle on L(("’l)/2), we can
immediately get L("1) from one call to
EXTEND-SHORTEST-PATHS(L("=1)/2) | [((n-1)/2))

Of course, we can similarly get L("=1/2) from “squaring” L{("=1)/4),
and so on

Starting from the beginning, we initialize L() = W, then compute
L@ =1We M, 18 =1@Dc1@ [®=1*cL*), and so on
What happens if n — 1 is not a power of 2 and we “overshoot” it?
How many steps of repeated squaring do we need to make?

What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths(W)

1 n = number of rows of W

2 1O =w

3m=1

4 while m < n—1do

5 L(2m) — EXTEND-SHORTEST-PaTHS(L(™), L(m))
6 m=2m

7 end

8 return L(m

Structure of Shortest Path

v

Again, let V ={1,...,n}, and fix i,j € V
> For some 1 < k < n, consider set of vertices Vj = {1,..., k}

» Now consider all paths from i to j whose intermediate vertices come

from Vj and let p be a minimum-weight path from them
> Is k € p?

1. If not, then all intermediate vertices of p are in Vi_1, and a SP from i to j

based on Vj_1 is also a SP from i to j based on Vi

2. If so, then we can decompose p into i Bk 53»], where p; and p, are each

shortest paths based on Vj_;

Recursive Solution

» What does this mean?

Floyd-Warshall Algorithm

» Shaves the logarithmic factor off of the previous algorithm

» As with previous algorithm, start by assuming that there are no negative
weight cycles; can detect negative weight cycles the same way as before

» Considers a different way to decompose shortest paths, based on the
notion of an intermediate vertex

> If simple path p = (vi, 2, v3,..., V41, V), then the set of intermediate
vertices is {vo, v3,...,v_1}

Structure of Shortest Path (2)

all intermediate vertices in {1,2,..., k — 1} all intermediate vertices in {1,2,..., k—1}

4 0 P2 o
®
-_— —

p: all intermediate vertices in {1,2,..., k}

Floyd-Warshall(W)

It means that a shortest path from i to j based on Vj is either going to
be the same as that based on Vj_1, or it is going to go through k

In the latter case, a shortest path from i to j based on Vj is going to be
a shortest path from i to k based on Vj_1, followed by a shortest path
from k to j based on Vj_;

Let matrix D) = (d,.(jk)), where d,S-k) = weight of a shortest path from
i to j based on Vj:

wij ifk=0
d = Y k—1 k—1 k-1
i min (df* D, df D 4) k=1

Since all SPs are based on V,, = V, we get d,g.") =0(i,j) foralli,je V

1 n = number of rows of W

2 DO =w

3 for k =1 to n do

4 for i =1 to ndo

5 for j =1 to ndo

6 o) = min (40, dff 7V + off V)
7 end

8 end

9 end

10 return D(")

Transitive Closure Transitive-Closure(G)

» Used to determine whether paths exist between pairs of vertices

> Given directed, unweighted graph G = (V, E) where V = {1,...,n},
the transitive closure of G is G* = (V, E*), where

allocate and initialize n x n matrix T(©)

1
« P 2 for k =1 to ndo
E* = {(i,j) : there is a path from i to j in G} X allocate n x n matrix T
. . 4 for i =1 to ndo
» How can we directly apply Floyd-Warshall to find E*? 5 for j = 1 to n do
. i i L s) lk=1)) k1) (k-1)
» Simpler way: Define matrix T similarly to D: i ik i
7 end
t(o) _ 0 ifi 75_] and (IJ) € E 8 end
i 71 ifi=jor(i,j)eE 9 end

10 return T(")

(k) _ ((k=1) (k=1) » 4(k=1)
t; =t \/(t,-k Aty)

> l.e., you can reach j from i using Vj if you can do so using Vj_; or if
you can reach k from i and reach j from k, both using Vj_1

Example Analysis

> Like Floyd-Warshall, time complexity is officially ©(n®)

> However, use of Os and 1s exclusively allows implementations to use
bitwise operations to speed things up significantly, processing bits in
batch, a word at a time

70 | i . T — | : . 7@ — | i i » Also saves space
01 1 10 11 1011 > Another space saver: Can update the T matrix (and F-W's D matrix) in
place rather than allocating a new matrix for each step (Exercise 25.2-4)
100 0 00 0
&[0 7@ —

