
1/36

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 07 — Single-Source Shortest Paths (Chapter 24)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

2/36

Introduction

I Given a weighted, directed graph G = (V ,E) with weight function
w : E ! R

I The weight of path p = hv0, v1, . . . , vki is the sum of the weights of its
edges:

w(p) =
kX

i=1

w(vi�1, vi)

I Then the shortest-path weight from u to v is

�(u, v) =

(
min{w(p) : u

p v} if there is a path from u to v
1 otherwise

I A shortest path from u to v is any path p with weight w(p) = �(u, v)

I
Applications: Network routing, driving directions

3/36

Types of Shortest Path Problems

Given G as described earlier,

I
Single-Source Shortest Paths: Find shortest paths from source node
s to every other node

I
Single-Destination Shortest Paths: Find shortest paths from every
node to destination t

I Can solve with SSSP solution. How?

I
Single-Pair Shortest Path: Find shortest path from specific node u to
specific node v

I Can solve via SSSP; no asymptotically faster algorithm known

I
All-Pairs Shortest Paths: Find shortest paths between every pair of
nodes

I Can solve via repeated application of SSSP, but can do better

4/36

Optimal Substructure of a Shortest Path

The shortest paths problem has the optimal substructure property: If
p = hv0, v1, . . . , vki is a SP from v0 to vk , then for 0 i j k ,
pij = hvi , vi+1, . . . , vji is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij vj
pjk vk with weight

w(p) = w(p0i) + w(pij) + w(pjk). If there exists a path p0ij from vi to vj

with w(p0ij) < w(pij), then p is not a SP since v0
p0i vi

p0ij vj
pjk vk has

less weight than p

5/36

Negative-Weight Edges (1)

I What happens if the graph G has edges with negative weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
right circumstances (which circumstances?)

6/36

Negative-Weight Edges (2)

7/36

Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle

8/36

Relaxation

I Given weighted graph G = (V ,E) with source node s 2 V and other
node v 2 V (v 6= s), we’ll maintain d [v], which is upper bound on
�(s, v)

I
Relaxation of an edge (u, v) is the process of testing whether we can
decrease d [v], yielding a tighter upper bound

9/36

Initialize-Single-Source(G , s)

1 for each vertex v 2 V do

2 d [v] = 1
3 ⇡[v] = nil

4 end

5 d [s] = 0

10/36

Relax(u, v ,w)

1 if d [v] > d [u] + w(u, v) then
2 d [v] = d [u] + w(u, v)

3 ⇡[v] = u

4

11/36

Relaxation Example

Numbers in nodes are values of d

12/36

Bellman-Ford Algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V |� 1 passes over all edges, relaxing each edge during each pass
I No cycles implies all shortest paths have |V |� 1 edges, so that number

of relaxations is su�cient

13/36

Bellman-Ford(G ,w , s)

1 Initialize-Single-Source(G , s)

2 for i = 1 to |V |� 1 do

3 for each edge (u, v) 2 E do

4 Relax(u, v ,w)

5 end

6 end

7 for each edge (u, v) 2 E do

8 if d [v] > d [u] + w(u, v) then
9 return false // G has a negative-wt cycle

10

11 end

12 return true // G has no neg-wt cycle reachable frm s

14/36

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)

15/36

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y)

16/36

Time Complexity of Bellman-Ford Algorithm

I
Initialize-Single-Source takes how much time?

I
Relax takes how much time?

I What is time complexity of relaxation steps (nested loops)?

I What is time complexity of steps to check for negative-weight cycles?

I What is total time complexity?

17/36

Correctness of Bellman-Ford: Finds SP Lengths

I Assume no negative-weight cycles

I Since no cycles appear in SPs, every SP has at most |V |� 1 edges

I Then define sets S0, S1, . . . S|V |�1:

Sk = {v 2 V : 9s p v s.t. �(s, v) = w(p) and |p| k}

I
Loop invariant: After ith iteration of outer relaxation loop (Line 2), for
all v 2 Si , we have d [v] = �(s, v)

I aka path-relaxation property (Lemma 24.15)
I Can prove via induction on i :

I Obvious for i = 0
I If holds for v 2 Si�1, then definition of relaxation and optimal substructure

) holds for v 2 Si

I Implies that, after |V |� 1 iterations, d [v] = �(s, v) for all
v 2 V = S|V |�1

18/36

Correctness of Bellman-Ford: Detects Negative-Weight Cycles

I Let c = hv0, v1, . . . , vk = v0i be neg-weight cycle reachable from s:

kX

i=1

w(vi�1, vi) < 0

I If algorithm incorrectly returns true, then (due to Line 8) for all nodes
in the cycle (i = 1, 2, . . . , k),

d [vi] d [vi�1] + w(vi�1, vi)

I By summing, we get

kX

i=1

d [vi]
kX

i=1

d [vi�1] +
kX

i=1

w(vi�1, vi)

I Since v0 = vk ,
Pk

i=1 d [vi] =
Pk

i=1 d [vi�1]

I This implies that 0
Pk

i=1 w(vi�1, vi), a contradiction

19/36

SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V |� 1 iterations of edge relaxations?

I To confirm that SP information fully propagated to all nodes
(path-relaxation property)

I What if we knew that, after we relaxed an edge just once, we would be
completely done with it?

I Can do this if G a dag and we relax edges in correct order (what order?)

20/36

Dag-Shortest-Paths(G ,w , s)

1 topologically sort the vertices of G

2 Initialize-Single-Source(G , s)

3 for each vertex u 2 V , taken in topo sorted order
do

4 for each v 2 Adj [u] do
5 Relax(u, v ,w)

6 end

7 end

21/36

SSSP dag Example (1)

22/36

SSSP dag Example (2)

23/36

Analysis

I Correctness follows from path-relaxation property similar to
Bellman-Ford, except that relaxing edges in topologically sorted order
implies we relax the edges of a shortest path in order

I Topological sort takes how much time?

I
Initialize-Single-Source takes how much time?

I How many calls to Relax?

I What is total time complexity?

24/36

Dijkstra’s Algorithm

I Greedy algorithm

I Faster than Bellman-Ford

I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path weights from s have

been determined
I Repeatedly select u 2 V \ S with minimum SP estimate, add u to S , and

relax all edges leaving u

I Uses min-priority queue to repeatedly make greedy choice

25/36

Dijkstra(G ,w , s)

1 Initialize-Single-Source(G , s)

2 S = ;
3 Q = V

4 while Q 6= ; do

5 u = Extract-Min(Q)

6 S = S [{u}
7 for each v 2 Adj [u] do
8 Relax(u, v ,w)

9 end

10 end

26/36

Dijkstra’s Algorithm Example (1)

27/36

Dijkstra’s Algorithm Example (2)

28/36

Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I

Initialize-Single-Source takes how much time?
I What is time complexity to create Q?
I How many calls to Extract-Min?
I What is time complexity of Extract-Min?
I How many calls to Relax?
I What is time complexity of Relax?
I What is total time complexity?

I Using heap to implement priority queue, what are the answers to the
above questions?

I When might you choose one queue implementation over another?

29/36

Correctness of Dijkstra’s Algorithm

I
Invariant: At the start of each iteration of the while loop, d [v] = �(s, v)
for all v 2 S

I
Proof: Let u be first node added to S where d [u] 6= �(s, u)

I Let p = s
p1 x ! y

p2 u be SP to u and y first node on p in V � S
I Since y ’s predecessor x 2 S , d [y] = �(s, y) due to relaxation of (x , y)

I Since y precedes u in p and edge wts
non-negative:
d [y] = �(s, y) �(s, u) d [u]

I Since u was chosen before y in line 5, d [u] d [y], so
d [y] = �(s, y) = �(s, u) = d [u], a contradiction

Since all vertices eventually end up in S , get correctness of the algorithm

30/36

Linear Programming

I Given an m⇥n matrix A and a size-m vector b and a size-n vector c , find
a vector x of n elements that maximizes

Pn
i=1 cixi subject to Ax b

I E.g., c =
⇥
2 �3

⇤
, A =

2

4
1 1
1 �2
�1 0

3

5, b =

2

4
22
4
�8

3

5 implies:

maximize 2x1 � 3x2 subject to

x1 + x2 22

x1 � 2x2 4

x1 � 8

I
Solution: x1 = 16, x2 = 6

31/36

Di↵erence Constraints and Feasibility

I
Decision version of this problem: No objective function to maximize;
simply want to know if there exists a feasible solution, i.e., an x that
satisfies Ax b

I Special case is when each row of A has exactly one 1 and one �1,
resulting in a set of di↵erence constraints of the form

xj � xi bk

I
Applications: Any application in which a certain amount of time must
pass between events (x variables represent times of events)

32/36

Di↵erence Constraints and Feasibility (2)

A =

2

66666666664

1 �1 0 0 0
1 0 0 0 �1
0 1 0 0 �1
�1 0 1 0 0
�1 0 0 1 0
0 0 �1 1 0
0 0 �1 0 1
0 0 0 �1 1

3

77777777775

and b =

2

66666666664

0
�1
1
5
4
�1
�3
�3

3

77777777775

33/36

Di↵erence Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 � x2 0

x1 � x5 �1

x2 � x5 1

x3 � x1 5

x4 � x1 4

x4 � x3 �1

x5 � x3 �3

x5 � x4 �3

One solution: x = (�5,�3, 0,�1,�4)

34/36

Constraint Graphs

I Can represent instances of this problem in a constraint graph

G = (V ,E)

I Define a vertex for each variable, plus one more: If variables are
x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from v0 to each
other vertex:

E = {(vi , vj) : xj � xi bk is a constraint}
[{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all ` 6= 0

35/36

Constraint Graph Example

x1 � x2 0

x1 � x5 �1

x2 � x5 1

x3 � x1 5

x4 � x1 4

x4 � x3 �1

x5 � x3 �3

x5 � x4 �3

(�5,�3, 0,�1,�4)

36/36

Solving Feasibility with Bellman-Ford

Theorem: Let G be constraint graph for system of di↵erence constraints. If
G has a negative-weight cycle, then there is no feasible solution. If G has no
negative-weight cycle, then a feasible solution is

x = [�(v0, v1), �(v0, v2), . . . , �(v0, vn)]

I
Proof: For any edge (vi , vj) 2 E , triangle inequality says
�(v0, vj) �(v0, vi) + w(vi , vj), so �(v0, vj)� �(v0, vi) w(vi , vj)

) xi = �(v0, vi) and xj = �(v0, vj) satisfies constraint xi � xj w(vi , vj)

I If there is a negative-weight cycle c = hvi , vi+1, . . . , vk = vi i, then there
is a system of inequalities xi+1 � xi w(vi , vi+1),
xi+2 � xi+1 w(vi+1, vi+2), . . ., xk � xk�1 w(vk�1, vk). Summing
both sides gives 0 w(c) < 0, implying that a negative-weight cycle
indicates no solution

Can solve with Bellman-Ford in time O(n2 + nm)

