# Computer Science & Engineering 423/823 Design and Analysis of Algorithms

3/36

Lecture 07 — Single-Source Shortest Paths (Chapter 24)

#### Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

#### Introduction

- $\blacktriangleright$  Given a weighted, directed graph G=(V,E) with weight function  $w:E \to \mathbb{R}$
- The weight of path  $p = \langle v_0, v_1, \dots, v_k \rangle$  is the sum of the weights of its edges:

$$w(p) = \sum_{i=1}^{\kappa} w(v_{i-1}, v_i)$$

Then the shortest-path weight from u to v is

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- A shortest path from u to v is any path p with weight  $w(p) = \delta(u, v)$
- Applications: Network routing, driving directions

100 E (E) (E) (E) (D)

#### Types of Shortest Path Problems

Given G as described earlier,

- Single-Source Shortest Paths: Find shortest paths from source node *s* to every other node
- ▶ Single-Destination Shortest Paths: Find shortest paths from every node to destination *t* 
  - Can solve with SSSP solution. How?
- $\blacktriangleright$  Single-Pair Shortest Path: Find shortest path from specific node u to specific node v
  - Can solve via SSSP; no asymptotically faster algorithm known
- All-Pairs Shortest Paths: Find shortest paths between every pair of nodes
  - Can solve via repeated application of SSSP, but can do better

# Optimal Substructure of a Shortest Path

The shortest paths problem has the **optimal substructure property**: If  $p = \langle v_0, v_1, \ldots, v_k \rangle$  is a SP from  $v_0$  to  $v_k$ , then for  $0 \le i \le j \le k$ ,  $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$  is a SP from  $v_i$  to  $v_j$ **Proof:** Let  $p = v_0 \stackrel{p_{0i}}{\longrightarrow} v_i \stackrel{p_{0i}}{\longrightarrow} v_i \stackrel{p_{0i}}{\longrightarrow} v_k$  with weight

We have  $p = v_0 \rightsquigarrow v_i \rightsquigarrow v_j \rightsquigarrow v_k$  with weight  $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$ . If there exists a path  $p'_{ij}$  from  $v_i$  to  $v_j$  with  $w(p'_{ij}) < w(p_{ij})$ , then p is not a SP since  $v_0 \stackrel{p_{0i}}{\longrightarrow} v_i \stackrel{p'_{ij}}{\longrightarrow} v_k$  has less weight than p

#### Negative-Weight Edges (1)

#### Negative-Weight Edges (2)

- ► What happens if the graph *G* has edges with negative weights?
- Dijkstra's algorithm cannot handle this, Bellman-Ford can, under the right circumstances (which circumstances?)



#### Cycles

#### Relaxation



Numbers in nodes are values of d

## Bellman-Ford(G, w, s)

| 1                                                                     | INITIALIZE-SINGLE-SOURCE( $G, s$ )          |  |  |
|-----------------------------------------------------------------------|---------------------------------------------|--|--|
| 2                                                                     | for $i = 1$ to $ V  - 1$ do                 |  |  |
| 3                                                                     | for each edge $(u, v) \in E$ do             |  |  |
| 4                                                                     | Relax(u, v, w)                              |  |  |
| 5                                                                     | end                                         |  |  |
| 6 end                                                                 |                                             |  |  |
| 7 for each edge $(u, v) \in E$ do                                     |                                             |  |  |
| 8                                                                     | if $d[v] > d[u] + w(u, v)$ then             |  |  |
| 9                                                                     | return FALSE // $G$ has a negative-wt cycle |  |  |
| 10                                                                    |                                             |  |  |
| 11 end                                                                |                                             |  |  |
| 12 return ${\rm TRUE} \ // \ G$ has no neg-wt cycle reachable frm $s$ |                                             |  |  |
|                                                                       |                                             |  |  |

<ロト < 母 ト < 言 ト < 言 ト ミ の < で 13/36

15/36

Bellman-Ford Algorithm Example (1)



・ロト < 団ト < 三ト < 三ト < 三 ・ うへの</li>

10 + (B) + (E) + (E) = 900

Within each pass, edges relaxed in this order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Bellman-Ford Algorithm Example (2)



Within each pass, edges relaxed in this order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

Time Complexity of Bellman-Ford Algorithm



- RELAX takes how much time?
- What is time complexity of relaxation steps (nested loops)?
- What is time complexity of steps to check for negative-weight cycles?
- What is total time complexity?

#### Correctness of Bellman-Ford: Finds SP Lengths

- Assume no negative-weight cycles
- $\blacktriangleright$  Since no cycles appear in SPs, every SP has at most  $|\mathit{V}|-1$  edges
- Then define sets  $S_0, S_1, \ldots S_{|V|-1}$ :

$$S_k = \{ v \in V : \exists s \stackrel{p}{\rightsquigarrow} v \text{ s.t. } \delta(s, v) = w(p) \text{ and } |p| \leq k \}$$

- ► Loop invariant: After *i*th iteration of outer relaxation loop (Line 2), for all  $v \in S_i$ , we have  $d[v] = \delta(s, v)$ 
  - aka path-relaxation property (Lemma 24.15)
  - Can prove via induction on i:
    - Obvious for i = 0
    - ▶ If holds for  $v \in S_{i-1}$ , then definition of relaxation and optimal substructure  $\Rightarrow$  holds for  $v \in S_i$
- ▶ Implies that, after |V| 1 iterations,  $d[v] = \delta(s, v)$  for all  $v \in V = S_{|V|-1}$

< ロ > < 団 > < 三 > < 三 > 、 三 > の へ の

#### Correctness of Bellman-Ford: Detects Negative-Weight Cycles

• Let  $c = \langle v_0, v_1, \dots, v_k = v_0 \rangle$  be neg-weight cycle reachable from s:

$$\sum_{i=1}^k w(v_{i-1}, v_i) < 0$$

▶ If algorithm incorrectly returns TRUE, then (due to Line 8) for all nodes in the cycle (i = 1, 2, ..., k),

$$d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$$

By summing, we get

$$\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

- ► Since  $v_0 = v_k$ ,  $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ ► This implies that  $0 \le \sum_{i=1}^k w(v_{i-1}, v_i)$ , a contradiction

### SSSPs in Directed Acyclic Graphs

- Why did Bellman-Ford have to run |V| 1 iterations of edge relaxations?
- To confirm that SP information fully propagated to all nodes (path-relaxation property)





- What if we knew that, after we relaxed an edge just once, we would be completely done with it?
- ► Can do this if G a dag and we relax edges in correct order (what order?)

<ロト <日 < E < E < E < 19/36

# Dag-Shortest-Paths(G, w, s)



100 5 (5) (5) (5) (5) (5)

#### Analysis

- Correctness follows from path-relaxation property similar to Bellman-Ford, except that relaxing edges in topologically sorted order implies we relax the edges of a shortest path in order
- Topological sort takes how much time?
- INITIALIZE-SINGLE-SOURCE takes how much time?
- ► How many calls to RELAX?
- What is total time complexity?

### Dijkstra's Algorithm

- Greedy algorithm
- Faster than Bellman-Ford
- Requires all edge weights to be nonnegative
- $\blacktriangleright$  Maintains set S of vertices whose final shortest path weights from s have been determined
  - ▶ Repeatedly select  $u \in V \setminus S$  with minimum SP estimate, add u to S, and relax all edges leaving u
- Uses min-priority queue to repeatedly make greedy choice

<□> < □> < □> < □> < ≥> < ≥> ≥ < ○< ○</p>
24/36

Dijkstra(G, w, s)



Dijkstra's Algorithm Example (1)

Time Complexity of Dijkstra's Algorithm

Dijkstra's Algorithm Example (2)



#### Correctness of Dijkstra's Algorithm

- ▶ Invariant: At the start of each iteration of the while loop,  $d[v] = \delta(s, v)$  for all  $v \in S$ 
  - ▶ **Proof:** Let *u* be first node added to *S* where  $d[u] \neq \delta(s, u)$
  - Let p = s <sup>p₁</sup><sub>1</sub> x → y <sup>p₂</sup><sub>2</sub> u be SP to u and y first node on p in V − S
     Since y's predecessor x ∈ S, d[y] = δ(s, y) due to relaxation of (x, y)
  - Since y precedes u in p and edge wts
  - non-negative:  $d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$
  - Since u was chosen before y in line 5,  $d[u] \le d[y]$ , so  $d[y] = \delta(s, y) = \delta(s, u) = d[u]$ , a contradiction

Since all vertices eventually end up in S, get correctness of the algorithm  $\hfill\square$ 

#### Linear Programming

Given an m×n matrix A and a size-m vector b and a size-n vector c, find a vector x of n elements that maximizes ∑<sup>n</sup><sub>i=1</sub> c<sub>i</sub>x<sub>i</sub> subject to Ax ≤ b

► E.g., 
$$c = \begin{bmatrix} 2 & -3 \end{bmatrix}$$
,  $A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -1 & 0 \end{bmatrix}$ ,  $b = \begin{bmatrix} 22 \\ 4 \\ -8 \end{bmatrix}$  implies:  
maximize  $2x_1 - 3x_2$  subject to

▶ **Solution:** *x*<sub>1</sub> = 16, *x*<sub>2</sub> = 6

-ÓV

ų

### Difference Constraints and Feasibility

- Difference Constraints and Feasibility (2)
- Decision version of this problem: No objective function to maximize; simply want to know if there exists a feasible solution, i.e., an x that satisfies Ax ≤ b
- ▶ Special case is when each row of *A* has exactly one 1 and one −1, resulting in a set of **difference constraints** of the form

 $x_j - x_i \leq b_k$ 

► **Applications:** Any application in which a certain amount of time must pass between events (*x* variables represent times of events)

 $^{-1}$ 0 0 0 1 1 0 0 0  $^{-1}$  $^{-1}$ 0 1 0 0  $^{-1}$ 1 -1 0 1 0 0 5 A =and b = $-1 \quad 0$ 0 1 0 4 0 -1 1 0 0  $^{-1}$ 0 0  $^{-1}$ 0 1 -30 0 0  $^{-1}$ 1 -3

| < □ > < ∰ > < ≅ > < ≅ > < ≅ < ⊃Q (* 31/36 | < ロ > < 合 > < き > ミ や へ C 32/36 |
|-------------------------------------------|---------------------------------|
|-------------------------------------------|---------------------------------|

Difference Constraints and Feasibility (3)

Is there a setting for  $x_1, \ldots, x_5$  satisfying:

One solution: x = (-5, -3, 0, -1, -4)

| $x_1 - x_2$ | $\leq$ | 0       |
|-------------|--------|---------|
| $x_1 - x_5$ | $\leq$ | $^{-1}$ |
| $x_2 - x_5$ | $\leq$ | 1       |
| $x_3 - x_1$ | $\leq$ | 5       |
| $x_4 - x_1$ | $\leq$ | 4       |
| $x_4 - x_3$ | $\leq$ | $^{-1}$ |
| $x_5 - x_3$ | $\leq$ | -3      |
| $x_5 - x_4$ | $\leq$ | -3      |

# Constraint Graphs

- Can represent instances of this problem in a **constraint graph** G = (V, E)
- ▶ Define a vertex for each variable, plus one more: If variables are  $x_1, \ldots, x_n$ , get  $V = \{v_0, v_1, \ldots, v_n\}$
- Add a directed edge for each constraint, plus an edge from v<sub>0</sub> to each other vertex:

 $E = \{(v_i, v_j) : x_j - x_i \le b_k \text{ is a constraint}\} \\ \cup \{(v_0, v_1), (v_0, v_2), \dots, (v_0, v_n)\}$ 

• Weight of edge  $(v_i, v_j)$  is  $b_k$ , weight of  $(v_0, v_\ell)$  is 0 for all  $\ell \neq 0$ 

Constraint Graph Example



#### Solving Feasibility with Bellman-Ford

**Theorem:** Let G be constraint graph for system of difference constraints. If G has a negative-weight cycle, then there is no feasible solution. If G has no negative-weight cycle, then **a** feasible solution is

$$x = [\delta(v_0, v_1), \delta(v_0, v_2), \dots, \delta(v_0, v_n)]$$

- ▶ **Proof:** For any edge  $(v_i, v_j) \in E$ , triangle inequality says  $\delta(v_0, v_j) \leq \delta(v_0, v_i) + w(v_i, v_j)$ , so  $\delta(v_0, v_j) \delta(v_0, v_i) \leq w(v_i, v_j)$
- $\Rightarrow x_i = \delta(v_0, v_i)$  and  $x_j = \delta(v_0, v_j)$  satisfies constraint  $x_i x_j \le w(v_i, v_j)$
- If there is a negative-weight cycle c = ⟨v<sub>i</sub>, v<sub>i+1</sub>,..., v<sub>k</sub> = v<sub>i</sub>⟩, then there is a system of inequalities x<sub>i+1</sub> x<sub>i</sub> ≤ w(v<sub>i</sub>, v<sub>i+1</sub>), x<sub>i+2</sub> x<sub>i+1</sub> ≤ w(v<sub>i+1</sub>, v<sub>i+2</sub>), ..., x<sub>k</sub> x<sub>k-1</sub> ≤ w(v<sub>k-1</sub>, v<sub>k</sub>). Summing both sides gives 0 ≤ w(c) < 0, implying that a negative-weight cycle indicates no solution</p>

Can solve with Bellman-Ford in time  $O(n^2 + nm)$ 

100 E (E) (E) (E) (E)

34/36