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Introduction

I Given a connected, undirected graph G = (V ,E ), a spanning tree is an
acyclic subset T ⊆ E that connects all vertices in V

I T acyclic ⇒ a tree
I T connects all vertices ⇒ spans G

I If G is weighted, then T ’s weight is w(T ) =
∑

(u,v)∈T w(u, v)

I A minimum weight spanning tree (or minimum spanning tree, or
MST) is a spanning tree of minimum weight

I Not necessarily unique

I Applications: anything where one needs to connect all nodes with
minimum cost, e.g., wires on a circuit board or fiber cable in a network
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MST Example
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Kruskal’s Algorithm

I Greedy algorithm: Make the locally best choice at each step

I Starts by declaring each vertex to be its own tree (so all nodes together
make a forest)

I Iteratively identify the minimum-weight edge (u, v) that connects two
distinct trees, and add it to the MST T , merging u’s tree with v ’s tree
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MST-Kruskal(G ,w)

1 A = ∅
2 for each vertex v ∈ V do
3 Make-Set(v)

4 end

5 sort edges in E into nondecreasing order by weight w

6 for each edge (u, v) ∈ E, taken in nondecreasing order
do

7 if Find-Set(u) 6= Find-Set(v) then
8 A = A ∪ {(u, v)}
9 Union(u, v)

10

11 end

12 return A
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More on Kruskal’s Algorithm

I Find-Set(u) returns a representative element from the set (tree) that
contains u

I Union(u, v) combines u’s tree to v ’s tree

I These functions are based on the disjoint-set data structure

I More on this later



7/21

Example (1)
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Example (2)
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Example (3)
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Disjoint-Set Data Structure

I Given a universe U = {x1, . . . , xn} of elements (e.g., the vertices in a
graph G ), a DSDS maintains a collection S = {S1, . . . ,Sk} of disjoint
sets of elements such that

I Each element xi is in exactly one set Sj
I No set Sj is empty

I Membership in sets is dynamic (changes as program progresses)

I Each set S ∈ S has a representative element x ∈ S

I Chapter 21
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Disjoint-Set Data Structure (2)
I DSDS implementations support the following functions:

I Make-Set(x) takes element x and creates new set {x}; returns pointer
to x as set’s representative

I Union(x , y) takes x ’s set (Sx) and y ’s set (Sy , assumed disjoint from
Sx), merges them, destroys Sx and Sy , and returns representative for new
set from Sx ∪ Sy

I Find-Set(x) returns a pointer to the representative of the unique set
that contains x

I Section 21.3: can perform d D-S operations on e elements in time
O(d α(e)), where α(e) = o(lg∗ e) = o(log e) is very slowly growing:

α(e) =


0 if 0 ≤ e ≤ 2
1 if e = 3
2 if 4 ≤ e ≤ 7
3 if 8 ≤ e ≤ 2047
4 if 2048 ≤ e ≤ 22048 (� 10600)

lg∗(e) =



0 if e ≤ 1
1 if 1 < e ≤ 2
2 if 2 < e ≤ 4
3 if 4 < e ≤ 16
4 if 16 < e ≤ 65536
5 if 65536 < e ≤ 265536
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Analysis of Kruskal’s Algorithm

I Sorting edges takes time O(|E | log |E |)
I Number of disjoint-set operations is O(|V |+ |E |) on O(|V |) elements,

which can be done in time O((|V |+ |E |)α(|V |)) = O(|E |α(|V |)) since
|E | ≥ |V | − 1

I Since α(|V |) = o(log |V |) = O(log |E |), we get total time of
O(|E | log |E |) = O(|E | log |V |) since log |E | = O(log |V |)
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Prim’s Algorithm

I Greedy algorithm, like Kruskal’s

I In contrast to Kruskal’s, Prim’s algorithm maintains a single tree rather
than a forest

I Starts with an arbitrary tree root r

I Repeatedly finds a minimum-weight edge that is incident to a node not
yet in tree
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MST-Prim(G ,w , r)

1 A = ∅
2 for each vertex v ∈ V do
3 key [v ] =∞
4 π[v ] = nil

5 end

6 key [r ] = 0

7 Q = V

8 while Q 6= ∅ do
9 u = Extract-Min(Q)

10 for each v ∈ Adj[u] do
11 if v ∈ Q and w(u, v) < key [v ] then
12 π[v ] = u

13 key [v ] = w(u, v)

14

15 end

16 end
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More on Prim’s Algorithm

I key [v ] is the weight of the minimum weight edge from v to any node
already in MST

I Extract-Min uses a minimum heap (minimum priority queue) data
structure

I Binary tree where the key at each node is ≤ keys of its children
I Thus minimum value always at top
I Any subtree is also a heap
I Height of tree is Θ(log n)
I Can build heap on n elements in O(n) time
I After returning the minimum, can filter new minimum to top in time

O(log n)
I Based on Chapter 6
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Example (1)
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Example (2)



18/21

Analysis of Prim’s Algorithm

I Invariant: Prior to each iteration of the while loop:

1. Nodes already in MST are exactly those in V \ Q
2. For all vertices v ∈ Q, if π[v ] 6= nil, then key [v ] <∞ and key [v ] is the

weight of the lightest edge that connects v to a node already in the tree

I Time complexity:
I Building heap takes time O(|V |)
I Make |V | calls to Extract-Min, each taking time O(log |V |)
I For loop iterates O(|E |) times

I In for loop, need constant time to check for queue membership and
O(log |V |) time for decreasing v ’s key and updating heap

I Yields total time of O(|V | log |V |+ |E | log |V |) = O(|E | log |V |)
I Can decrease total time to O(|E |+ |V | log |V |) using Fibonacci heaps



19/21

Proof of Correctness of Both Algorithms
I Both algorithms use greedy approach for optimality
I Maintain invariant that at any time, set of edges A selected so far is

subset of some MST
⇒ Optimal substructure property

I Each iteration of each algorithm looks for a safe edge e such that
A ∪ {e} is also a subset of an MST
⇒ Greedy choice

I Prove invariant via use of cut (S ,V − S) that respects A (no edges
span cut)
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Proof of Correctness of Both Algorithms (2)

I Theorem: Let A ⊆ E be included in some MST of G , (S ,V − S) be a
cut respecting A, and (u, v) ∈ E be a minimum-weight edge crossing
cut. Then (u, v) is a safe edge for A.

I Proof:
I Let T be an MST including A and not including (u, v)
I Let p be path from u to v in T , and (x , y) be edge from p crossing cut

(⇒ not in A)
I Since T is a spanning tree, so is T ′ = T − {(x , y)} ∪ {(u, v)}
I Both (u, v) and (x , y) cross cut, so w(u, v) ≤ w(x , y)
I So, w(T ′) = w(T )− w(x , y) + w(u, v) ≤ w(T )
⇒ T ′ is MST
⇒ (u, v) safe for A since A ∪ {(u, v)} ⊆ T ′



21/21

Proof of Correctness of Both Algorithms (3)
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