
1/24

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 05 — Elementary Graph Algorithms (Chapter 22)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

2/24

Introduction

I Graphs are abstract data types that are applicable to numerous problems
I Can capture entities, relationships between them, the degree of the

relationship, etc.

I This chapter covers basics in graph theory, including representation, and
algorithms for basic graph-theoretic problems (some content was covered
in review lecture)

I We’ll build on these later this semester

3/24

Breadth-First Search (BFS)

I Given a graph G = (V ,E) (directed or undirected) and a source node
s 2 V , BFS systematically visits every vertex that is reachable from s

I Uses a queue data structure to search in a breadth-first manner

I Creates a structure called a BFS tree such that for each vertex v 2 V ,
the distance (number of edges) from s to v in tree is a shortest path in G

I Initialize each node’s color to white

I As a node is visited, color it to gray () in queue), then black ()
finished)

4/24

BFS(G , s)

1 for each vertex u 2 V \ {s} do

2 color [u] = white

3 d [u] = 1
4 ⇡[u] = nil

5 end

6 color [s] = gray

7 d [s] = 0

8 ⇡[s] = nil

9 Q = ;
10 Enqueue(Q, s)

11 while Q 6= ; do

12 u = Dequeue(Q)

13 for each v 2 Adj [u] do
14 if color [v] == white then

15 color [v] = gray

16 d [v] = d [u] + 1

17 ⇡[v] = u

18 Enqueue(Q, v)

19

20 end

21 color [u] = black

22 end

5/24

BFS Example

6/24

BFS Example (2)

7/24

BFS Properties

I What is the running time?
I Hint: How many times will a node be enqueued?

I After the end of the algorithm, d [v] = shortest distance from s to v

) Solves unweighted shortest paths
I Can print the path from s to v by recursively following ⇡[v], ⇡[⇡[v]], etc.

I If d [v] == 1, then v not reachable from s

) Solves reachability

8/24

Depth-First Search (DFS)

I Another graph traversal algorithm

I Unlike BFS, this one follows a path as deep as possible before
backtracking

I Where BFS is “queue-like,” DFS is “stack-like”

I Tracks both “discovery time” and “finishing time” of each node, which
will come in handy later

9/24

DFS(G)

1 for each vertex u 2 V do

2 color [u] = white

3 ⇡[u] = nil

4 end

5 time = 0

6 for each vertex u 2 V do

7 if color [u] == white then

8 DFS-Visit(u)

9

10 end

10/24

DFS-Visit(u)

1 color [u] = gray

2 time = time + 1

3 d [u] = time

4 for each v 2 Adj [u] do
5 if color [v] == white then

6 ⇡[v] = u

7 DFS-Visit(v)

8

9 end

10 color [u] = black

11 f [u] = time = time + 1

11/24

DFS Example

12/24

DFS Example (2)

13/24

DFS Properties

I Time complexity same as BFS: ⇥(|V |+ |E |)
I Vertex u is a proper descendant of vertex v in the DF tree i↵

d [v] < d [u] < f [u] < f [v]

) Parenthesis structure: If one prints “(u” when discovering u and “u)”
when finishing u, then printed text will be a well-formed parenthesized
sentence

14/24

DFS Properties (2)

I Classification of edges into groups
I A tree edge is one in the depth-first forest
I A back edge (u, v) connects a vertex u to its ancestor v in the DF tree

(includes self-loops)
I A forward edge is a nontree edge connecting a node to one of its DF tree

descendants
I A cross edge goes between non-ancestral edges within a DF tree or

between DF trees
I See labels in DFS example

I Example use of this property: A graph has a cycle i↵ DFS discovers a
back edge (application: deadlock detection)

I When DFS first explores an edge (u, v), look at v ’s color:
I

color [v] == white implies tree edge
I

color [v] == gray implies back edge
I

color [v] == black implies forward or cross edge

15/24

Application: Topological Sort

A directed acyclic graph (dag) can represent precedences: an edge (x , y)
implies that event/activity x must occur before y

A topological sort of a dag G is an linear ordering of its vertices such that if
G contains an edge (u, v), then u appears before v in the ordering

16/24

Topological Sort Algorithm

1. Call DFS algorithm on dag G

2. As each vertex is finished, insert it to the front of a linked list

3. Return the linked list of vertices

I Thus topological sort is a descending sort of vertices based on DFS
finishing times

I What is the time complexity?
I Why does it work?

I When a node is finished, it has no unexplored outgoing edges; i.e., all its
descendant nodes are already finished and inserted at later spot in final
sort

17/24

Application: Strongly Connected Components

Given a directed graph G = (V ,E), a strongly connected component

(SCC) of G is a maximal set of vertices C ✓ V such that for every pair of
vertices u, v 2 C u is reachable from v and v is reachable from u

What are the SCCs of the above graph?

18/24

Component Graph

Collapsing edges within each component yields acyclic component graph

19/24

Transpose Graph

I Algorithm for finding SCCs of G depends on the transpose of G ,

denoted G

T

I
G

T is simply G with edges reversed

I Fact: GT and G have same SCCs. Why?

20/24

SCC Algorithm

1. Call DFS algorithm on G

2. Compute G

T

3. Call DFS algorithm on G

T, looping through vertices in order of
decreasing finishing times from first DFS call

4. Each DFS tree in second DFS run is an SCC in G

21/24

SCC Algorithm Example

After first round of DFS:

Which node is first one to be visited in second DFS?

22/24

SCC Algorithm Example (2)

After second round of DFS:

23/24

SCC Algorithm Analysis

I What is its time complexity?
I How does it work?

1. Let x be node with highest finishing time in first DFS

2. In G

T, x ’s component C has no edges to any other component (Lemma
22.14), so the second DFS’s tree edges define exactly x ’s component

3. Now let x 0 be the next node explored in a new component C 0

4. The only edges from C

0 to another component are to nodes in C , so the
DFS tree edges define exactly the component for x 0

5. And so on...

I In other words, DFS on G

T visits components in order of a topological
sort of G ’s component graph

) First component node of GT visited has no outgoing edges (since in G it
has only incoming edges), second only has edges into the first, etc.

24/24

Intuition

I For algorithm to work, need to start second DFS in component abe
I How do we know that some node in abe will have largest finish time?

I If first DFS in G starts in abe, then it visits all other reachable components
and finishes in abe) one of {a, b, e} will have largest finish time

I If first DFS in G starts in component “downstream” of abe, then that
DFS round will not reach abe) to finish in abe, you have to start there
at some point) you will finish there last (see above)

