Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 04 — Greedy Algorithms (Chapter 16)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Introduction

» Greedy methods: A technique for solving optimization problems
» Choose a solution to a problem that is best per an objective function

» Similar to dynamic programming in that we examine subproblems,
exploiting optimal substructure property

> Key difference: In dynamic programming we considered all possible
subproblems

> In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal choice)

» Examples: Minimum spanning tree, single-source shortest paths

Activity Selection (1)

» Consider the problem of scheduling classes in a classroom

» Many courses are candidates to be scheduled in that room, but not all
can have it (can't hold two courses at once)

» Want to maximize utilization of the room in terms of number of classes

scheduled
» This is an example of the activity selection problem:
» Given: Set S ={ay,a,,...,a,} of n proposed activities that wish to use a

resource that can serve only one activity at a time

» a; has a start time s; and a finish time f;, 0 < s5; < f; < ©

> If a; is scheduled to use the resource, it occupies it during the interval
[si, i) = can schedule both a; and a; iff s5; > f; or s5; > f; (if this happens,
then we say that a; and a; are compatible)

» Goal is to find a largest subset S’ C S such that all activities in S’ are
pairwise compatible

» Assume that activities are sorted by finish time:

h<h<- <t

Activity Selection (2)

i1 2 3 4 5 6 7 8 9 10 11
ss|/1 3 05 3 5 6 8 8 2 12
14 5 6 7 9 9 10 11 12 14 16

Sets of mutually compatible activities: {as, ag, a11}, {a1, a4, ag, a11},
{a2,a4,a9,a11}

Optimal Substructure of Activity Selection

> Let S;; be set of activities that start after a; finishes and that finish
before a; starts

> Let A; C Sj; be a largest set of activities that are mutually compatible

» If activity ax € Ajj, then we get two subproblems: S (subset starting
after a; finishes and finishing before aj starts) and Sk
> If we extract from Aj; its set of activities from S, we get
Aik = Ajj N Six, which is an optimal solution to S
» If it weren't, then we could take the better solution to Sy (call it A,) and
plug its tasks into A; and get a better solution
» Works because subproblem S independent from Sy;
» Thus if we pick an activity ax to be in an optimal solution and then
solve the subproblems, our optimal solution is Ajj = Aj U {ax} U Ay,
which is of size |Aj| + |Axj| +1

Optimal Substructure Example

i11 2 3 4 5 6 7 8 9 10 11
ss|1 3 0 5 3 5 6 8 8 2 12
14 5 6 7 9 9 10 11 12 14 16
» Let! 5 =S111 ={a1,...,a11} and Aj = Ay 11 = {a1, 4, 3, 311}

» For di = as, get Slk = 51,8 = {31, do, as, 84} and 58,11 = {311}
A178 = A1,11 ﬂ 51,8 = {al, 34}, which is optimal for 51,8
A8711 = A1711 ﬂ 53711 = {311}, which is optimal fOI’ 58,11

v

v

!Left-hand boundary condition addressed by adding to S activity ap with fy = 0 and
setting i =0

Recursive Definition

> Let c[i, /] be the size of an optimal solution to Sj;

(o if Sj =10
cli,jl = max,, s, {cli, k] + c[k,j] + 1} if S; # 0

> In dynamic programming, we need to try all a, since we don't know
which one is the best choice...

» ...or do we?

Greedy Choice

» What if, instead of trying all activities ax, we simply chose the one with
the earliest finish time of all those still compatible with the scheduled
ones?

» This is a greedy choice in that it maximizes the amount of time left
over to schedule other activities

> Let Sx ={a; € S :s; > fi} be set of activities that start after ay finishes

> If we greedily choose a; first (with earliest finish time), then S; is the
only subproblem to solve

Greedy Choice (2)

» Theorem: Consider any nonempty subproblem Sy and let a,, be an
activity in S with earliest finish time. Then a,, is in some maximum-size
subset of mutually compatible activities of Sy

» Proof (by construction):

> Let Ax be an optimal solution to Si and let aj have earliest finish time of
all in Ag

» If aj = apm, we're done

» If aj # am, then define A} = Ar\ {a;} U{am}

» Activities in A’ are mutually compatible since those in A are mutually
compatible and £, < f;

» Since |A,| = |Ak|, we get that A} is a maximum-size subset of mutually
compatible activities of Sy that includes a,, [

» What this means is that there exists an optimal solution that uses the
greedy choice

Greedy-Activity-Selector(s, f, n)

1 A:{al}

2 k=1

3 for m=2 tondo

4 if sim] > f[k] then
5 A=AU{an}
6

7

8

9

k=m

end

return A

What is the time complexity?

Example

ko8 f

) =

L4 Rajcuxsujva-A:cnvn:v-sm:ﬂ-m;(:. /.?0. 1

2 3 s Rjﬁuks:vE-A:Cnvn:Y-Sﬂ:frm;l(J. E1.1|:)

30 6 ‘

45 7

503 0

6 s 9

76 10

8 8 1

9 8 12

0 2 14 _ cu

nonr o _ [7
REcuu‘slvEr:Acnv:lwVSEl,l-xjmk(s‘/‘ll‘ll)} :
i o)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

hPANG 11/24

Greedy vs Dynamic Programming (1)

> Like with dynamic programming, greedy leverages a problem’s optimal
substructure property

» When can we get away with a greedy algorithm instead of DP?

» When we can argue that the greedy choice is part of an optimal
solution, implying that we need not explore all subproblems
» Example: The knapsack problem
» There are n items that a thief can steal, item i weighing w; pounds and
worth v; dollars
» The thief's goal is to steal a set of items weighing at most W pounds and
maximizes total value
> In the 0-1 knapsack problem, each item must be taken in its entirety
(e.g., gold bars)
» In the fractional knapsack problem, the thief can take part of an item
and get a proportional amount of its value (e.g., gold dust)

Greedy vs Dynamic Programming (2)

» There's a greedy algorithm for the fractional knapsack problem

» Sort the items by v;/w; and choose the items in descending order
» Has greedy choice property, since any optimal solution lacking the greedy
choice can have the greedy choice swapped in

» Works because one can always completely fill the knapsack at the last step
» Greedy strategy does not work for 0-1 knapsack, but do have
O(nW)-time dynamic programming algorithm
» Note that time complexity is pseudopolynomial
» Decision problem is NP-complete

Greedy vs Dynamic Programming (3)

20
30| $80
item 3 30 $120
— +
item 2 + 30| $120
1 20| $100 201 $100
item 1 30 + + +
20 201 $100 1
$60 $60 10| $60
$60 $100 $120 knapsack =$220 =$160 =$180 =$240

(a) (b) (¢)
Problem instance 0-1 (greedy is suboptimal) Fractional

Huffman Coding

> Interested in encoding a file of symbols from some alphabet
» Want to minimize the size of the file, based on the frequencies of the
symbols

» A fixed-length code uses [log, n| bits per symbol, where n is the size
of the alphabet C

» A variable-length code uses fewer bits for more frequent symbols

a b c d e f
Frequency (in thousands) | 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword | 0 101 100 111 1101 1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Huffman Coding (2)

Can represent any encoding as a binary tree

(a) (b)

Algorithm for Optimal Codes

» Can get an optimal code by finding an appropriate prefix code, where
no codeword is a prefix of another

» Optimal code also corresponds to a full binary tree
» Huffman's algorithm builds an optimal code by greedily building its tree

» Given alphabet C (which corresponds to leaves), find the two least
frequent ones, merge them into a subtree

» Frequency of new subtree is the sum of the frequencies of its children

» Then add the subtree back into the set for future consideration

Huffman(C)

1 n=|C]|

2 Q=C // min-priority queue
3 fori=1ton—1do

4 allocate node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, 2)

9 end

o return EXTRACT-MIN(Q) // return root

=

Time complexity: n — 1 iterations, O(log n) time per iteration, total O(nlog n)

Huffman Example

© [E5) [¢9) 2 (BT (@)) © EZEE @
0 1
[£5] [e9]
© @ (25 @ @
0, 1 0, 1 0, 1
(£5) [e9]

Optimal Coding Has Greedy Choice Property (1)

» Lemma: Let C be an alphabet in which symbol ¢ € C has frequency
c.freq and let x,y € C have lowest frequencies. Then there exists an
optimal prefix code for C in which codewords for x and y have the same
length and differ only in the last bit.

> l.e., an optimal solution exists that merges lowest frequencies first

> Proof: Let T be a tree representing an arbitrary optimal prefix code,
and let a and b be siblings of maximum depth in T

» Assume, w.l.o.g., that x.freq < y.freq and a.freq < b.freq

» Since x and y are the two least frequent nodes, we get x.freq < a.freq and
y.freq < b.freq

» Convert T to T’ by exchanging a and x, then convert to T” by
exchanging b and y

» In T, x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2)

Is T” optimal?

Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T’ is B(T) — B(T'):

Z c.freq - dr(c) — Z c.freq - d1:(c)

ceC ceC

x.freq - d1(x) + a.freq - dr(a) — x.freq - d1/(x) — a.freq - d7/(a)
x.freq - dv(x) + a.freq - dr(a) — x.freq - dr(a) — a.freq - d1(x)
(a.freq — x.freq)(dr(a) — dr(x)) >0

since a.freq > x.freq and dt(a) > dr(x)
Similarly, B(T') — B(T"”) >0, so B(T") < B(T), so T" is optimal

Optimal Codin% Has Optimal Substructure Property (1)

» Lemma: Let C be an alphabet in which symbol
¢ € C has frequency c.freq and let x,y € C have
lowest frequencies. Let C' = C\ {x,y} U{z}
and z.freq = x.freq + y.freq. Let T’ be any tree
representing an optimal prefix code for C’. Then
T, which is T’ with leaf z replaced by internal
node with children x and y, represents an
optimal prefix code for C

» Proof: Since dr(x) = dr(y) = dr(z) + 1,

x.freq - d1(x) + y.freq - d7(y)
= (x.freq + y.freq)(d7/(z) + 1)
= z.freq - d1/(z) + (x.freq + y.freq)

Also, since d1(c) = d7/(c) for all c € C\ {x,y},
B(T) = B(T') + x.freq + y.freq and
B(T') = B(T) — x.freq — y.freq

Optimal Coding Has Optimal Substructure Property (2)

» Assume that T is not optimal, i.e., B(T") < B(T)
for some T”

» Assume w.l.o.g. (based on greedy choice lemma) that
x and y are siblings in T”

» In T”, replace x, y, and their parent with z such
that z.freq = x.freq + y.freq, to get T":

B(T") = B(T")—x.freq—y.freq (prev. slide)
< B(T)-—x.freq — y.freq (subopt assump)
= B(T) (prev. slide)

» Contradicts assumption that T’ is optimal for C’ [

	Introduction
	Activity Selection
	Optimal Substructure
	Example
	Recursive Definition
	Greedy Choice
	Iterative Algorithm

	Greedy vs Dynamic Programming
	Huffman Coding
	Algorithm
	Greedy Choice Property
	Optimal Substructure Property

