Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 04 — Greedy Algorithms (Chapter 16)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

Introduction

- Greedy methods: A technique for solving optimization problems
 - Choose a solution to a problem that is best per an objective function
- Similar to dynamic programming in that we examine subproblems, exploiting optimal substructure property
- Key difference: In dynamic programming we considered **all** possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- ► Examples: Minimum spanning tree, single-source shortest paths

Activity Selection (1)

- Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room in terms of number of classes scheduled
- > This is an example of the activity selection problem:
 - ▶ Given: Set S = {a₁, a₂,..., a_n} of n proposed activities that wish to use a resource that can serve only one activity at a time
 - ▶ a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$

f

- ▶ If a_i is scheduled to use the resource, it occupies it during the interval $[s_i, f_i) \Rightarrow$ can schedule both a_i and a_j iff $s_i \ge f_j$ or $s_j \ge f_i$ (if this happens, then we say that a_i and a_j are **compatible**)
- ▶ Goal is to find a largest subset $S' \subseteq S$ such that all activities in S' are pairwise compatible
- Assume that activities are sorted by finish time:

$$f_1 \leq f_2 \leq \cdots \leq f_n$$

Activity Selection (2)

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

Sets of mutually compatible activities: $\{a_3, a_9, a_{11}\}, \{a_1, a_4, a_8, a_{11}\}, \{a_2, a_4, a_9, a_{11}\}$

Optimal Substructure of Activity Selection

- Let S_{ij} be set of activities that start after a_i finishes and that finish before a_j starts
- ▶ Let $A_{ij} \subseteq S_{ij}$ be a largest set of activities that are mutually compatible
- ► If activity a_k ∈ A_{ij}, then we get two subproblems: S_{ik} (subset starting after a_i finishes and finishing before a_k starts) and S_{kj}
- If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - ▶ If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into A_{ij} and get a better solution
 - Works because subproblem S_{ik} independent from S_{kj}
- ► Thus if we pick an activity a_k to be in an optimal solution and then solve the subproblems, our optimal solution is A_{ij} = A_{ik} ∪ {a_k} ∪ A_{kj}, which is of size |A_{ik}| + |A_{kj}| + 1

Optimal Substructure Example

• Let¹
$$S_{ij} = S_{1,11} = \{a_1, \dots, a_{11}\}$$
 and $A_{ij} = A_{1,11} = \{a_1, a_4, a_8, a_{11}\}$
• For $a_k = a_8$, get $S_{1k} = S_{1,8} = \{a_1, a_2, a_3, a_4\}$ and $S_{8,11} = \{a_{11}\}$
• $A_{1,8} = A_{1,11} \bigcap S_{1,8} = \{a_1, a_4\}$, which is optimal for $S_{1,8}$
• $A_{8,11} = A_{1,11} \bigcap S_{8,11} = \{a_{11}\}$, which is optimal for $S_{8,11}$

¹Left-hand boundary condition addressed by adding to S activity a_0 with $f_0 = 0$ and setting i = 0

▶ Let c[i, j] be the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{ c[i,k] + c[k,j] + 1 \} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

- In dynamic programming, we need to try all a_k since we don't know which one is the best choice...
- ...or do we?

Greedy Choice

- What if, instead of trying all activities a_k, we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- This is a greedy choice in that it maximizes the amount of time left over to schedule other activities
- ▶ Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be set of activities that start after a_k finishes
- If we greedily choose a₁ first (with earliest finish time), then S₁ is the only subproblem to solve

Greedy Choice (2)

- ► Theorem: Consider any nonempty subproblem S_k and let a_m be an activity in S_k with earliest finish time. Then a_m is in some maximum-size subset of mutually compatible activities of S_k
- Proof (by construction):
 - Let A_k be an optimal solution to S_k and let a_j have earliest finish time of all in A_k
 - If $a_j = a_m$, we're done
 - If $a_j \neq a_m$, then define $A'_k = A_k \setminus \{a_j\} \cup \{a_m\}$
 - ► Activities in A' are mutually compatible since those in A are mutually compatible and f_m ≤ f_j
 - ► Since |A'_k| = |A_k|, we get that A'_k is a maximum-size subset of mutually compatible activities of S_k that includes a_m
- What this means is that there exists an optimal solution that uses the greedy choice

Greedy-Activity-Selector(*s*, *f*, *n*)

1
$$A = \{a_1\}$$

2 $k = 1$
3 for $m = 2$ to n do
4 $|$ if $s[m] \ge f[k]$ then
5 $|$ $|$ $A = A \cup \{a_m\}$
6 $|$ $|$ $k = m$
7 $|$
8 end
9 return A

What is the time complexity?

Example

▲□▶▲□▶▲□▶▲□▶ □ のへで

11/24

Greedy vs Dynamic Programming (1)

- Like with dynamic programming, greedy leverages a problem's optimal substructure property
- When can we get away with a greedy algorithm instead of DP?
- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - There are n items that a thief can steal, item i weighing w_i pounds and worth v_i dollars
 - ► The thief's goal is to steal a set of items weighing at most *W* pounds and maximizes total value
 - In the 0-1 knapsack problem, each item must be taken in its entirety (e.g., gold bars)
 - In the fractional knapsack problem, the thief can take part of an item and get a proportional amount of its value (e.g., gold dust)

Greedy vs Dynamic Programming (2)

There's a greedy algorithm for the fractional knapsack problem

- Sort the items by v_i/w_i and choose the items in descending order
- Has greedy choice property, since any optimal solution lacking the greedy choice can have the greedy choice swapped in
 - Works because one can always completely fill the knapsack at the last step
- Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is *pseudopolynomial*
 - Decision problem is NP-complete

Greedy vs Dynamic Programming (3)

<ロ> < (型) < (三) < (三) < (三) < (三) < (三) < (二) </p>

Huffman Coding

- Interested in encoding a file of symbols from some alphabet
- Want to minimize the size of the file, based on the frequencies of the symbols
- ► A fixed-length code uses [log₂ n] bits per symbol, where n is the size of the alphabet C
- A variable-length code uses fewer bits for more frequent symbols

	a	b	с	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Huffman Coding (2)

Can represent any encoding as a binary tree

If c.freq = frequency of codeword and $d_T(c) =$ depth, cost of tree T is

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

▲□▶ ▲御▶ ▲注▶ ▲注▶ - 注: のへで……

Algorithm for Optimal Codes

- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its tree
- Given alphabet C (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- Frequency of new subtree is the sum of the frequencies of its children
- Then add the subtree back into the set for future consideration

Huffman(*C*)

1 n = |C|² Q = C // min-priority queue 3 for i = 1 to n - 1 do allocate node zΔ 5 z.left = x = EXTRACT-MIN(Q)6 z.right = y = EXTRACT-MIN(Q)z.freq = x.freq + y.freq7 INSERT(Q, z)8 9 end 10 return EXTRACT-MIN(Q) // return root Time complexity: n-1 iterations, $O(\log n)$ time per iteration, total $O(n \log n)$

Huffman Example

Optimal Coding Has Greedy Choice Property (1)

- ▶ Lemma: Let *C* be an alphabet in which symbol $c \in C$ has frequency *c.freq* and let $x, y \in C$ have lowest frequencies. Then there exists an optimal prefix code for *C* in which codewords for *x* and *y* have the same length and differ only in the last bit.
 - I.e., an optimal solution exists that merges lowest frequencies first
- Proof: Let T be a tree representing an arbitrary optimal prefix code, and let a and b be siblings of maximum depth in T
 - Assume, w.l.o.g., that $x.freq \le y.freq$ and $a.freq \le b.freq$
 - ► Since x and y are the two least frequent nodes, we get x.freq ≤ a.freq and y.freq ≤ b.freq
 - Convert T to T' by exchanging a and x, then convert to T" by exchanging b and y
 - In T'', x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2)

Is T'' optimal?

 Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T' is B(T) - B(T'):

$$= \sum_{c \in C} c.freq \cdot d_{T}(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_{T}(x) + a.freq \cdot d_{T}(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_{T}(x) + a.freq \cdot d_{T}(a) - x.freq \cdot d_{T}(a) - a.freq \cdot d_{T}(x)$$

$$= (a.freq - x.freq)(d_{T}(a) - d_{T}(x)) \ge 0$$

since a.freq $\geq x$.freq and $d_T(a) \geq d_T(x)$ Similarly, $B(T') - B(T'') \geq 0$, so $B(T'') \leq B(T)$, so T'' is optimal

Optimal Coding Has Optimal Substructure Property (1) Lemma: Let C be an alphabet in which symbol

 $c \in C$ has frequency c.freq and let $x, y \in C$ have lowest frequencies. Let $C' = C \setminus \{x, y\} \cup \{z\}$ and z.freq = x.freq + y.freq. Let T' be any tree representing an optimal prefix code for C'. Then T, which is T' with leaf z replaced by internal node with children x and y, represents an optimal prefix code for C

• **Proof:** Since
$$d_T(x) = d_T(y) = d_{T'}(z) + 1$$
,

$$\begin{aligned} x.freq \cdot d_{T}(x) + y.freq \cdot d_{T}(y) \\ &= (x.freq + y.freq)(d_{T'}(z) + 1) \\ &= z.freq \cdot d_{T'}(z) + (x.freq + y.freq) \end{aligned}$$

Also, since $d_T(c) = d_{T'}(c)$ for all $c \in C \setminus \{x, y\}$, B(T) = B(T') + x.freq + y.freq and B(T') = B(T) - x.freq - y.freq

Optimal Coding Has Optimal Substructure Property (2)

- Assume that T is not optimal, i.e., B(T'') < B(T) for some T''
- Assume w.l.o.g. (based on greedy choice lemma) that x and y are siblings in T"
- In T", replace x, y, and their parent with z such that z.freq = x.freq + y.freq, to get T":

 $\begin{array}{lll} B(T''') &=& B(T'') - x.freq - y.freq & (prev. slide) \\ &<& B(T) - x.freq - y.freq & (subopt assump) \\ &=& B(T') & (prev. slide) \end{array}$

• Contradicts assumption that T' is optimal for C'

