
1/24

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 04 — Greedy Algorithms (Chapter 16)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

2/24

Introduction

I Greedy methods: A technique for solving optimization problems
I Choose a solution to a problem that is best per an objective function

I Similar to dynamic programming in that we examine subproblems,
exploiting optimal substructure property

I Key difference: In dynamic programming we considered all possible
subproblems

I In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal choice)

I Examples: Minimum spanning tree, single-source shortest paths

3/24

Activity Selection (1)

I Consider the problem of scheduling classes in a classroom

I Many courses are candidates to be scheduled in that room, but not all
can have it (can’t hold two courses at once)

I Want to maximize utilization of the room in terms of number of classes
scheduled

I This is an example of the activity selection problem:
I Given: Set S = {a1, a2, . . . , an} of n proposed activities that wish to use a

resource that can serve only one activity at a time
I ai has a start time si and a finish time fi , 0 ≤ si < fi <∞
I If ai is scheduled to use the resource, it occupies it during the interval

[si , fi) ⇒ can schedule both ai and aj iff si ≥ fj or sj ≥ fi (if this happens,
then we say that ai and aj are compatible)

I Goal is to find a largest subset S ′ ⊆ S such that all activities in S ′ are
pairwise compatible

I Assume that activities are sorted by finish time:

f1 ≤ f2 ≤ · · · ≤ fn

4/24

Activity Selection (2)

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

Sets of mutually compatible activities: {a3, a9, a11}, {a1, a4, a8, a11},
{a2, a4, a9, a11}

5/24

Optimal Substructure of Activity Selection

I Let Sij be set of activities that start after ai finishes and that finish
before aj starts

I Let Aij ⊆ Sij be a largest set of activities that are mutually compatible

I If activity ak ∈ Aij , then we get two subproblems: Sik (subset starting
after ai finishes and finishing before ak starts) and Skj

I If we extract from Aij its set of activities from Sik , we get
Aik = Aij ∩ Sik , which is an optimal solution to Sik

I If it weren’t, then we could take the better solution to Sik (call it A′
ik) and

plug its tasks into Aij and get a better solution
I Works because subproblem Sik independent from Skj

I Thus if we pick an activity ak to be in an optimal solution and then
solve the subproblems, our optimal solution is Aij = Aik ∪ {ak} ∪ Akj ,
which is of size |Aik |+ |Akj |+ 1

6/24

Optimal Substructure Example

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

I Let1 Sij = S1,11 = {a1, . . . , a11} and Aij = A1,11 = {a1, a4, a8, a11}
I For ak = a8, get S1k = S1,8 = {a1, a2, a3, a4} and S8,11 = {a11}
I A1,8 = A1,11

⋂
S1,8 = {a1, a4}, which is optimal for S1,8

I A8,11 = A1,11
⋂
S8,11 = {a11}, which is optimal for S8,11

1Left-hand boundary condition addressed by adding to S activity a0 with f0 = 0 and
setting i = 0

7/24

Recursive Definition

I Let c[i , j] be the size of an optimal solution to Sij

c[i , j] =

{
0 if Sij = ∅
maxak∈Sij{c[i , k] + c[k , j] + 1} if Sij 6= ∅

I In dynamic programming, we need to try all ak since we don’t know
which one is the best choice...

I ...or do we?

8/24

Greedy Choice

I What if, instead of trying all activities ak , we simply chose the one with
the earliest finish time of all those still compatible with the scheduled
ones?

I This is a greedy choice in that it maximizes the amount of time left
over to schedule other activities

I Let Sk = {ai ∈ S : si ≥ fk} be set of activities that start after ak finishes

I If we greedily choose a1 first (with earliest finish time), then S1 is the
only subproblem to solve

9/24

Greedy Choice (2)

I Theorem: Consider any nonempty subproblem Sk and let am be an
activity in Sk with earliest finish time. Then am is in some maximum-size
subset of mutually compatible activities of Sk

I Proof (by construction):
I Let Ak be an optimal solution to Sk and let aj have earliest finish time of

all in Ak

I If aj = am, we’re done
I If aj 6= am, then define A′

k = Ak \ {aj} ∪ {am}
I Activities in A′ are mutually compatible since those in A are mutually

compatible and fm ≤ fj
I Since |A′

k | = |Ak |, we get that A′
k is a maximum-size subset of mutually

compatible activities of Sk that includes am

I What this means is that there exists an optimal solution that uses the
greedy choice

10/24

Greedy-Activity-Selector(s, f , n)

1 A = {a1}
2 k = 1

3 for m = 2 to n do
4 if s[m] ≥ f [k] then
5 A = A ∪ {am}
6 k = m

7

8 end

9 return A

What is the time complexity?

11/24

Example

12/24

Greedy vs Dynamic Programming (1)

I Like with dynamic programming, greedy leverages a problem’s optimal
substructure property

I When can we get away with a greedy algorithm instead of DP?

I When we can argue that the greedy choice is part of an optimal
solution, implying that we need not explore all subproblems

I Example: The knapsack problem
I There are n items that a thief can steal, item i weighing wi pounds and

worth vi dollars
I The thief’s goal is to steal a set of items weighing at most W pounds and

maximizes total value
I In the 0-1 knapsack problem, each item must be taken in its entirety

(e.g., gold bars)
I In the fractional knapsack problem, the thief can take part of an item

and get a proportional amount of its value (e.g., gold dust)

13/24

Greedy vs Dynamic Programming (2)

I There’s a greedy algorithm for the fractional knapsack problem
I Sort the items by vi/wi and choose the items in descending order
I Has greedy choice property, since any optimal solution lacking the greedy

choice can have the greedy choice swapped in
I Works because one can always completely fill the knapsack at the last step

I Greedy strategy does not work for 0-1 knapsack, but do have
O(nW)-time dynamic programming algorithm

I Note that time complexity is pseudopolynomial
I Decision problem is NP-complete

14/24

Greedy vs Dynamic Programming (3)

Problem instance 0-1 (greedy is suboptimal) Fractional

15/24

Huffman Coding

I Interested in encoding a file of symbols from some alphabet

I Want to minimize the size of the file, based on the frequencies of the
symbols

I A fixed-length code uses dlog2 ne bits per symbol, where n is the size
of the alphabet C

I A variable-length code uses fewer bits for more frequent symbols

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

16/24

Huffman Coding (2)
Can represent any encoding as a binary tree

If c .freq = frequency of codeword and dT (c) = depth, cost of tree T is

B(T) =
∑
c∈C

c .freq · dT (c)

17/24

Algorithm for Optimal Codes

I Can get an optimal code by finding an appropriate prefix code, where
no codeword is a prefix of another

I Optimal code also corresponds to a full binary tree

I Huffman’s algorithm builds an optimal code by greedily building its tree

I Given alphabet C (which corresponds to leaves), find the two least
frequent ones, merge them into a subtree

I Frequency of new subtree is the sum of the frequencies of its children

I Then add the subtree back into the set for future consideration

18/24

Huffman(C)

1 n = |C |
2 Q = C // min-priority queue

3 for i = 1 to n − 1 do
4 allocate node z

5 z .left = x = Extract-Min(Q)

6 z .right = y = Extract-Min(Q)

7 z .freq = x .freq + y .freq

8 Insert(Q, z)

9 end

10 return Extract-Min(Q) // return root

Time complexity: n − 1 iterations, O(log n) time per iteration, total O(n log n)

19/24

Huffman Example

20/24

Optimal Coding Has Greedy Choice Property (1)

I Lemma: Let C be an alphabet in which symbol c ∈ C has frequency
c .freq and let x , y ∈ C have lowest frequencies. Then there exists an
optimal prefix code for C in which codewords for x and y have the same
length and differ only in the last bit.

I I.e., an optimal solution exists that merges lowest frequencies first

I Proof: Let T be a tree representing an arbitrary optimal prefix code,
and let a and b be siblings of maximum depth in T

I Assume, w.l.o.g., that x .freq ≤ y .freq and a.freq ≤ b.freq
I Since x and y are the two least frequent nodes, we get x .freq ≤ a.freq and

y .freq ≤ b.freq
I Convert T to T ′ by exchanging a and x , then convert to T ′′ by

exchanging b and y
I In T ′′, x and y are siblings of maximum depth

21/24

Optimal Coding Has Greedy Choice Property (2)

Is T ′′ optimal?

22/24

Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T ′ is B(T)− B(T ′):

=
∑
c∈C

c.freq · dT (c)−
∑
c∈C

c .freq · dT ′(c)

= x .freq · dT (x) + a.freq · dT (a)− x .freq · dT ′(x)− a.freq · dT ′(a)

= x .freq · dT (x) + a.freq · dT (a)− x .freq · dT (a)− a.freq · dT (x)

= (a.freq − x .freq)(dT (a)− dT (x)) ≥ 0

since a.freq ≥ x .freq and dT (a) ≥ dT (x)
Similarly, B(T ′)− B(T ′′) ≥ 0, so B(T ′′) ≤ B(T), so T ′′ is optimal

23/24

Optimal Coding Has Optimal Substructure Property (1)
I Lemma: Let C be an alphabet in which symbol

c ∈ C has frequency c .freq and let x , y ∈ C have
lowest frequencies. Let C ′ = C \ {x , y} ∪ {z}
and z .freq = x .freq + y .freq. Let T ′ be any tree
representing an optimal prefix code for C ′. Then
T , which is T ′ with leaf z replaced by internal
node with children x and y , represents an
optimal prefix code for C

I Proof: Since dT (x) = dT (y) = dT ′(z) + 1,

x .freq · dT (x) + y .freq · dT (y)

= (x .freq + y .freq)(dT ′(z) + 1)

= z .freq · dT ′(z) + (x .freq + y .freq)

Also, since dT (c) = dT ′(c) for all c ∈ C \ {x , y},
B(T) = B(T ′) + x .freq + y .freq and
B(T ′) = B(T)− x .freq − y .freq

x y

z:

T’

x y

T

24/24

Optimal Coding Has Optimal Substructure Property (2)

I Assume that T is not optimal, i.e., B(T ′′) < B(T)
for some T ′′

I Assume w.l.o.g. (based on greedy choice lemma) that
x and y are siblings in T ′′

I In T ′′, replace x , y , and their parent with z such
that z .freq = x .freq + y .freq, to get T ′′′:

B(T ′′′) = B(T ′′)− x .freq − y .freq (prev. slide)

< B(T)− x .freq − y .freq (subopt assump)

= B(T ′) (prev. slide)

I Contradicts assumption that T ′ is optimal for C ′

x y

T”

x y

z:

T”’

	Introduction
	Activity Selection
	Optimal Substructure
	Example
	Recursive Definition
	Greedy Choice
	Iterative Algorithm

	Greedy vs Dynamic Programming
	Huffman Coding
	Algorithm
	Greedy Choice Property
	Optimal Substructure Property

