Introduction

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 04 — Greedy Algorithms (Chapter 16)

Stephen Scott and Vinodchandran N. Variyam

- Greedy methods: A technique for solving optimization problems Choose a solution to a problem that is best per an objective function
- Similar to dynamic programming in that we examine subproblems, exploiting optimal substructure property
- ▶ Key difference: In dynamic programming we considered all possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- Examples: Minimum spanning tree, single-source shortest paths

sscott@cse.unl.edu

Activity Selection (1)

- Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room in terms of number of classes scheduled
- > This is an example of the activity selection problem:
 - ▶ Given: Set S = {a₁, a₂,..., a_n} of n proposed activities that wish to use a resource that can serve only one activity at a time
 - a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$ If a_i is scheduled to use the resource, it occupies it during the interval
 - $[s_i, f_i) \Rightarrow$ can schedule both a_i and a_j iff $s_i \ge f_j$ or $s_j \ge f_i$ (if this happens, then we say that a_i and a_j are **compatible**) • Goal is to find a largest subset $S' \subseteq S$ such that all activities in S' are
 - pairwise compatible
 - Assume that activities are sorted by finish time:

 $f_1 \leq f_2 \leq \cdots \leq f_n$

Activity Selection (2)

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f _i	4	5	6	7	9	9	10	11	12	14	11 12 16

Sets of mutually compatible activities: $\{a_3, a_9, a_{11}\}, \{a_1, a_4, a_8, a_{11}\}, \{a_{11}, a_{12}, a_{12}$ $\{a_2, a_4, a_9, a_{11}\}$

Optimal Substructure of Activity Selection

- ▶ Let S_{ii} be set of activities that start after a_i finishes and that finish before a; starts
- ▶ Let $A_{ij} \subseteq S_{ij}$ be a largest set of activities that are mutually compatible
- ▶ If activity $a_k \in A_{ij}$, then we get two subproblems: S_{ik} (subset starting after a_i finishes and finishing before a_k starts) and S_{kj}
- If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into A_{ij} and get a better solution
 - ▶ Works because subproblem S_{ik} independent from S_{kj}
- Thus if we pick an activity a_k to be in an optimal solution and then
- solve the subproblems, our optimal solution is $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, which is of size $|A_{ik}| + |A_{kj}| + 1$

Optimal Substructure Example

											11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	12 16

- Let $S_{ij} = S_{1,11} = \{a_1, \dots, a_{11}\}$ and $A_{ij} = A_{1,11} = \{a_1, a_4, a_8, a_{11}\}$
- For $a_k = a_8$, get $S_{1k} = S_{1,8} = \{a_1, a_2, a_3, a_4\}$ and $S_{8,11} = \{a_{11}\}$
- $A_{1,8} = A_{1,11} \bigcap S_{1,8} = \{a_1, a_4\}$, which is optimal for $S_{1,8}$
- $A_{8,11} = A_{1,11} \bigcap S_{8,11} = \{a_{11}\}$, which is optimal for $S_{8,11}$

¹Left-hand boundary condition addressed by adding to S activity a_0 with $f_0 = 0$ and setting i = 0

Recursive Definition

Greedy Choice

▶ Let c[i, j] be the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

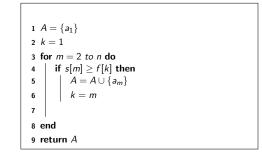
- \blacktriangleright In dynamic programming, we need to try all a_k since we don't know which one is the best choice...
- ► ...or do we?

- What if, instead of trying all activities a_k, we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- This is a greedy choice in that it maximizes the amount of time left over to schedule other activities
- Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be set of activities that start after a_k finishes
- If we greedily choose a_1 first (with earliest finish time), then S_1 is the only subproblem to solve

Greedy Choice (2)

- ▶ **Theorem:** Consider any nonempty subproblem *S_k* and let *a_m* be an activity in *S_k* with earliest finish time. Then *a_m* is in some maximum-size subset of mutually compatible activities of *S_k*
- Proof (by construction):
 - \blacktriangleright Let A_k be an optimal solution to S_k and let a_j have earliest finish time of all in A_k
 - ▶ If a_j = a_m, we're done
 - If $a_j \neq a_m$, then define $A'_k = A_k \setminus \{a_j\} \cup \{a_m\}$
 - \blacktriangleright Activities in A' are mutually compatible since those in A are mutually compatible and $f_m \leq f_j$
 - \blacktriangleright Since $|A_k'| = |A_k|$, we get that A_k' is a maximum-size subset of mutually compatible activities of S_k that includes a_m
- What this means is that there exists an optimal solution that uses the greedy choice

Greedy-Activity-Selector(s, f, n)



What is the time complexity?

Example

k O	<i>r</i> k -	<i>f</i> _k 0	a ₀												
ı	ı	4	d_	×	@1 w = 1			Recue	ave-A		-Selec	708(<i>r</i> .)	0, 11		
2	3	5				52 1	1	Recute	ave-A		Selec	708(<i>r.)</i>	1.11		
3	0	6	E		0) 91										
4	5	7			<i>a</i> ₁		σ ₄ m = 4								
5	3	9			<i>u</i> 1	-	a5	Roue	ave-A	TRUEY	-Sm.nc	TOR(s.)	4, 11	>	
6	5	9		-	<i>a</i> 1		·	a,							
7	6	10		-	<i>w</i> 1		α4	1	a,						
8	8	11			<i>a</i> 1		α4	/		0g ev = 8	7				
9	8	12	R		ACTIVIT <i>u</i> ₁	v-Sillic	a4	6.1D	-	a) 06	-	-			
0	2	14			•	r.	<i>a</i> 4	Ţ	1 ₁₀	06					
	12	16			<i>w</i> 1		a4			ω		/	a a		
			R		ACTIVIT Ø1	y-Sinne	πα(s.f.) α ₄	u, iu		o _g				0	
			0	i	2 3	4	5 6	7	8 9	10	n	12	13 1	4 15	16

Greedy vs Dynamic Programming (1)

- Like with dynamic programming, greedy leverages a problem's optimal substructure property
- When can we get away with a greedy algorithm instead of DP?
- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - \blacktriangleright There are *n* items that a thief can steal, item *i* weighing w_i pounds and worth v_i dollars
 - \blacktriangleright The thief's goal is to steal a set of items weighing at most W pounds and maximizes total value
 - In the 0-1 knapsack problem, each item must be taken in its entirety (e.g., gold bars)
 - In the fractional knapsack problem, the thief can take part of an item and get a proportional amount of its value (e.g., gold dust)

□ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ → ℑ < ♡ < ○
 12/24
 12/24
</p>

Greedy vs Dynamic Programming (2)

Greedy vs Dynamic Programming (3)

- There's a greedy algorithm for the fractional knapsack problem
 - Sort the items by v_i/w_i and choose the items in descending order
 Has greedy choice property, since any optimal solution lacking the greedy
 - choice can have the greedy choice swapped in

 Works because one can always completely fill the knapsack at the last step
- Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is *pseudopolynomial*
 - Decision problem is NP-complete

- (□) (♂) (≥) (≥) ≥ (○) (?) 13/24

<ロト <日 > < 三 > < 三 > < 三 > < 三 > へ 三 > へ 三 > へ 三 > つ へ () 14

Huffman Coding

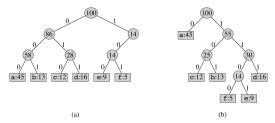
- Interested in encoding a file of symbols from some alphabet
- ▶ Want to minimize the size of the file, based on the frequencies of the symbols
- ▶ A fixed-length code uses $\lceil \log_2 n \rceil$ bits per symbol, where *n* is the size of the alphabet *C*
- A variable-length code uses fewer bits for more frequent symbols

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Huffman Coding (2)

Can represent any encoding as a binary tree



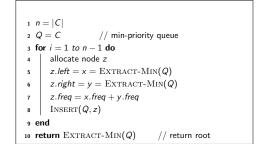
If c.freq = frequency of codeword and $d_{\mathcal{T}}(c) =$ depth, cost of tree \mathcal{T} is

 $B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$

Algorithm for Optimal Codes

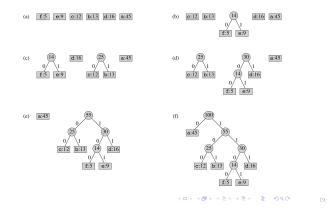
- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its tree
- Given alphabet C (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- Frequency of new subtree is the sum of the frequencies of its children
- > Then add the subtree back into the set for future consideration

Huffman(C)



Time complexity: n - 1 iterations, $O(\log n)$ time per iteration, total $O(n \log n)$

Huffman Example



Optimal Coding Has Greedy Choice Property (1)

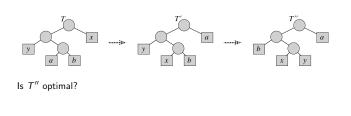
- **Lemma:** Let C be an alphabet in which symbol $c \in C$ has frequency *c.freq* and let $x, y \in C$ have lowest frequencies. Then there exists an optimal prefix code for C in which codewords for x and y have the same length and differ only in the last bit.
- I.e., an optimal solution exists that merges lowest frequencies first ▶ **Proof:** Let *T* be a tree representing an arbitrary optimal prefix code,
- and let a and b be siblings of maximum depth in T
 - Assume, w.l.o.g., that $x.freq \le y.freq$ and $a.freq \le b.freq$
 - Since x and y are the two least frequent nodes, we get x.freq $\leq a.freq$ and $y.freq \leq b.freq$

(ロ) (母) (E) (E) E 9000

10 + (B) + (E) + (E) = 000

- Convert T to T' by exchanging a and x, then convert to T'' by exchanging b and y
- In T", x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2)



Optimal Coding Has Greedy Choice Property (3)

Cost difference between T and T' is B(T) - B(T'):

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)
= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)

 $= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$

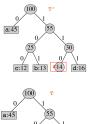
since a.freq $\geq x$.freq and $d_T(a) \geq d_T(x)$ Similarly, $B(T') - B(T'') \ge 0$, so $B(T'') \le B(T)$, so T'' is optimal

Optimal Coding Has Optimal Substructure Property (1) Lemma: Let C be an alphabet in which symbol

- $c \in C$ has frequency *c.freq* and let $x, y \in C$ have lowest frequencies. Let $C' = C \setminus \{x, y\} \cup \{z\}$ and z.freq = x.freq + y.freq. Let T' be any tree representing an optimal prefix code for C'. Then T, which is T' with leaf z replaced by internal node with children x and y, represents an optimal prefix code for ${\it C}$
- **Proof:** Since $d_T(x) = d_T(y) = d_{T'}(z) + 1$,

```
x.freq \cdot d_T(x) + y.freq \cdot d_T(y)
     = (x.freq + y.freq)(d_{T'}(z) + 1)
= z.freq \cdot d_{T'}(z) + (x.freq + y.freq)
```

Also, since $d_T(c) = d_{T'}(c)$ for all $c \in C \setminus \{x, y\}$, B(T) = B(T') + x.freq + y.freq and B(T') = B(T) - x.freq - y.freq



ADD I ARD I ED I ED I DOOR

Optimal Coding Has Optimal Substructure Property (2)

Assume that T is not optimal, i.e., B(T'') < B(T)► for some T''a:45 Assume w.l.o.g. (based on greedy choice lemma) that x and y are siblings in T''▶ In T'', replace x, y, and their parent with z such c:12 b:13 that z.freq = x.freq + y.freq, to get T''': B(T") D(T'')

$$\begin{array}{rcl} B(T^{*}) &=& B(T^{*}) - x.treq - y.treq & (prev. slide) \\ &<& B(T) - x.treq - y.treq & (subopt assump) \\ &=& B(T^{\prime}) & (prev. slide) \end{array}$$

• Contradicts assumption that T' is optimal for C'

c:12 b:13 14

