Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 03 — Dynamic Programming (Chapter 15)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

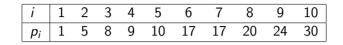
Introduction

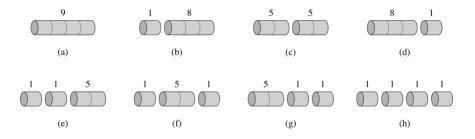
- Dynamic programming is a technique for solving optimization problems
- Key element: Decompose a problem into subproblems, solve them recursively, and then combine the solutions into a final (optimal) solution
- Important component: There are typically an exponential number of subproblems to solve, but many of them overlap
 - \Rightarrow Can re-use the solutions rather than re-solving them
- Number of distinct subproblems is polynomial

Rod Cutting (1)

- A company has a rod of length n and wants to cut it into smaller rods to maximize profit
- Have a table telling how much they get for rods of various lengths: A rod of length *i* has price p_i
- The cuts themselves are free, so profit is based solely on the prices charged for of the rods
- ► If cuts only occur at integral boundaries 1, 2, ..., n 1, then can make or not make a cut at each of n - 1 positions, so total number of possible solutions is 2ⁿ⁻¹

Rod Cutting (2)





▲口> ▲圖> ▲画> ▲画> 三面 - 釣A@ ---

Rod Cutting (3)

- ► Given a rod of length n, want to find a set of cuts into lengths i₁,..., i_k (where i₁ + ··· + i_k = n) and revenue r_n = p_{i1} + ··· + p_{ik} is maximized
- ► For a specific value of n, can either make no cuts (revenue = p_n) or make a cut at some position i, then optimally solve the problem for lengths i and n - i:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_i + r_{n-i}, \dots, r_{n-1} + r_1)$$

- Notice that this problem has the optimal substructure property, in that an optimal solution is made up of optimal solutions to subproblems
 - Easy to prove via contradiction (How?)
 - $\Rightarrow\,$ Can find optimal solution if we consider all possible subproblems
- ► Alternative formulation: Don't further cut the first segment:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Cut-Rod(p, n)

1 if n == 0 then 2 | return 0 3 $q = -\infty$ 4 for i = 1 to n do 5 | $q = \max(q, p[i] + \text{Cut-Rod}(p, n - i))$ 6 end 7 return q

▲□▶ ▲ @▶ ▲ 별▶ ▲ 별▶ 월 - ∽ Q (~)
 6/44

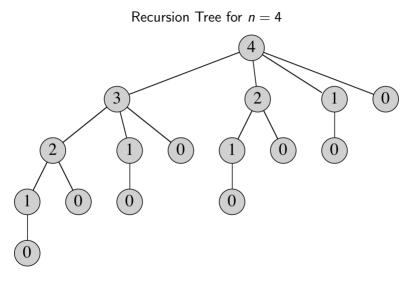
Time Complexity

- Let T(n) be number of calls to CUT-ROD
- Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

- ► Why exponential? CUT-ROD exploits the optimal substructure property, but repeats work on these subproblems
- E.g., if the first call is for n = 4, then there will be:
 - ▶ 1 call to CUT-ROD(4)
 - ▶ 1 call to CUT-ROD(3)
 - ▶ 2 calls to CUT-ROD(2)
 - ▶ 4 calls to CUT-ROD(1)
 - 8 calls to CUT-ROD(0)

Time Complexity (2)



Dynamic Programming Algorithm

- > Can save time dramatically by remembering results from prior calls
- ► Two general approaches:
 - 1. **Top-down with memoization:** Run the recursive algorithm as defined earlier, but before recursive call, check to see if the calculation has already been done and **memoized**
 - 2. **Bottom-up**: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones
- Typically have the same asymptotic running time

Memoized-Cut-Rod-Aux(p, n, r)

1 if r[n] > 0 then return r[n] // r initialized to all $-\infty$ 2 3 if n == 0 then q = 04 5 else $q = -\infty$ 6 for i = 1 to n do 7 8 a = $\max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n-i, r))$ end 9 r[n] = q10 11 return q

(日) (個) (目) (目) (日) (の)()

Bottom-Up-Cut-Rod(p, n)

1 Allocate r[0...n]2 r[0] = 03 for j = 1 to n do 4 $q = -\infty$ 5 for i = 1 to j do 6 $| q = \max(q, p[i] + r[j - i])$ 7 end8 r[j] = q9 end 10 return r[n]

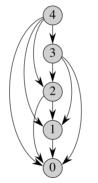
First solves for n = 0, then for n = 1 in terms of r[0], then for n = 2 in terms of r[0] and r[1], etc.

Example

・ロト・雪・・雪・・雪・・ ●

Time Complexity

Subproblem graph for n = 4



Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$

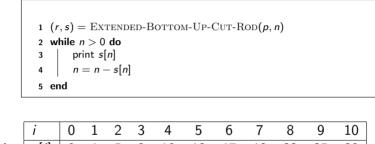
Reconstructing a Solution

- If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem
- Will add a second array s, which keeps track of the optimal size of the first piece cut in each subproblem

Extended-Bottom-Up-Cut-Rod(p, n)

```
1 Allocate r[0 \dots n] and s[0 \dots n]
r[0] = 0
3 for j = 1 to n do
 4
         a = -\infty
      for i = 1 to j do
 5
             if q < p[i] + r[j - i] then
6
        \begin{vmatrix} q = p[i] + r[j-i] \\ s[j] = i \end{vmatrix}
7
8
9
         end
        r[j] = q
10
11 end
12 return r, s
```

Print-Cut-Rod-Solution(p, n)



Example:	<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22	25	30
	s[i]	0	1	2	3	2	2	6	1	2	3	10

If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments of sizes 1 and 6

Matrix-Chain Multiplication (1)

- Given a chain of matrices $\langle A_1, \ldots, A_n \rangle$, goal is to compute their product $A_1 \cdots A_n$
- This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- Can cause dramatic changes in number of operations required
- Multiplying a p × q matrix by a q × r matrix requires pqr steps and yields a p × r matrix for future multiplications
- \blacktriangleright E.g., Let A_1 be 10 \times 100, A_2 be 100 \times 5, and A_3 be 5 \times 50
 - 1. Computing $((A_1A_2)A_3)$ requires $10 \cdot 100 \cdot 5 = 5000$ steps to compute (A_1A_2) (yielding a 10×5), and then $10 \cdot 5 \cdot 50 = 2500$ steps to finish, for a total of 7500
 - 2. Computing $(A_1(A_2A_3))$ requires $100 \cdot 5 \cdot 50 = 25000$ steps to compute (A_2A_3) (yielding a 100×50), and then $10 \cdot 100 \cdot 50 = 50000$ steps to finish, for a total of 75000

Matrix-Chain Multiplication (2)

- ► The matrix-chain multiplication problem is to take a chain ⟨A₁,..., A_n⟩ of n matrices, where matrix i has dimension p_{i-1} × p_i, and fully parenthesize the product A₁ ··· A_n so that the number of scalar multiplications is minimized
- Brute force solution is infeasible, since its time complexity is $\Omega\left(4^n/n^{3/2}\right)$
- We will follow 4-step procedure for dynamic programming:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution
 - 4. Construct an optimal solution from computed information

Step 1: Characterizing the Structure of an Optimal Solution

- Let $A_{i...j}$ be the matrix from the product $A_iA_{i+1}\cdots A_j$
- ► To compute A_{i...j}, must split the product and compute A_{i...k} and A_{k+1...j} for some integer k, then multiply the two together
- Cost is the cost of computing each subproduct plus cost of multiplying the two results
- Say that in an optimal parenthesization, the optimal split for A_iA_{i+1} · · · A_j is at k
- ► Then in an optimal solution for A_iA_{i+1} ··· A_j, the parenthisization of A_i ··· A_k is itself optimal for the subchain A_i ··· A_k (if not, then we could do better for the larger chain, i.e., proof by contradiction)
- Similar argument for $A_{k+1} \cdots A_j$
- Thus if we make the right choice for k and then optimally solve the subproblems recursively, we'll end up with an optimal solution
- ► Since we don't know optimal k, we'll try them all

Step 2: Recursively Defining the Value of an Optimal Solution

- Define m[i, j] as minimum number of scalar multiplications needed to compute A_{i...j}
- (What entry in the *m* table will be our final answer?)
- Computing m[i, j]:
 - 1. If i = j, then no operations needed and m[i, i] = 0 for all i
 - 2. If i < j and we split at k, then optimal number of operations needed is the optimal number for computing $A_{i...k}$ and $A_{k+1...j}$, plus the number to multiply them:

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

3. Since we don't know k, we'll try all possible values:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

To track the optimal solution itself, define s[i, j] to be the value of k used at each split

Step 3: Computing the Value of an Optimal Solution

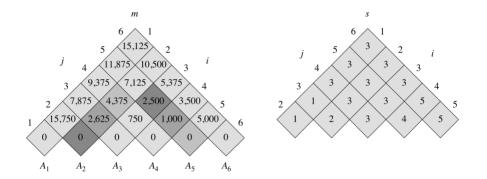
- As with the rod cutting problem, many of the subproblems we've defined will overlap
- Exploiting overlap allows us to solve only Θ(n²) problems (one problem for each (i, j) pair), as opposed to exponential
- ▶ We'll do a bottom-up implementation, based on chain length
- Chains of length 1 are trivially solved (m[i, i] = 0 for all i)
- > Then solve chains of length 2, 3, etc., up to length n
- Linear time to solve each problem, quadratic number of problems, yields O(n³) total time

Matrix-Chain-Order(p, n)

```
1 allocate m[1 \dots n, 1 \dots n] and s[1 \dots n, 1 \dots n]
2 initialize m[i, i] = 0 \forall 1 \le i \le n
3 for \ell = 2 to n do
        for i = 1 to n - \ell + 1 do
 л
            i = i + \ell - 1
 5
            m[i, j] = \infty
 6
            for k = i to j - 1 do
 7
                 q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
8
                 if q < m[i, j] then
Q
                      m[i,j] = q
10
                 s[i, j] = k
11
             end
12
        end
13
14 end
15 return (m, s)
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Example



matrix	A_1	A_2	A ₃	A_4	A_5	A_6
dimension	30 imes 35	35 imes15	15 imes 5	5 imes 10	10 imes 20	20 imes 25
p _i	$p_0 imes p_1$	$p_1 imes p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 imes p_5$	$p_5 imes p_6$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Step 4: Constructing an Optimal Solution from Computed Information

- Cost of optimal parenthesization is stored in m[1, n]
- First split in optimal parenthesization is between s[1, n] and s[1, n] + 1

- Descending recursively, next splits are between s[1, s[1, n]] and s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and s[s[1, n] + 1, n] + 1 for right side
- and so on...

Print-Optimal-Parens(s, i, j)

```
1 if i == j then

2 | print "A";

3 else

4 | print "("

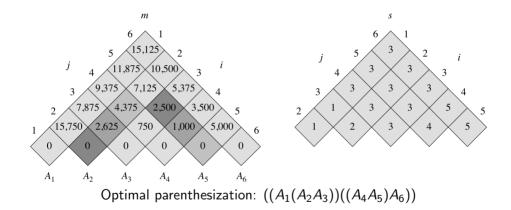
5 | PRINT-OPTIMAL-PARENS(s, i, s[i, j])

6 | PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

7 | print ")"
```

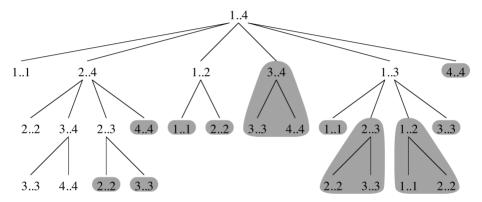
・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つんぐ

Example



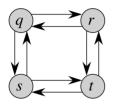
Example of How Subproblems Overlap

Entire subtrees overlap:



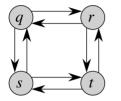
See Section 15.3 for more on optimal substructure and overlapping subproblems

Aside: More on Optimal Substructure



- The shortest path problem is to find a shortest path between two nodes in a graph
- The longest simple path problem is to find a longest simple path between two nodes in a graph
- > Does the shortest path problem have optimal substructure? Explain
- What about longest simple path?

Aside: More on Optimal Substructure (2)



- No, LSP does not have optimal substructure
- A SLP from q to t is $q \rightarrow r \rightarrow t$
- But $q \rightarrow r$ is **not** a SLP from q to r
- What happened?
- ► The subproblems are not independent: SLP q → s → t → r from q to r uses up all the vertices, so we cannot independently solve SLP from r to t and combine them
 - In contrast, SP subproblems don't share resources: can combine any SP u → w with any SP w → v to get a SP from u to v
- In fact, the SLP problem is NP-complete, so probably no efficient algorithm exists

Longest Common Subsequence

- Sequence Z = ⟨z₁, z₂,..., z_k⟩ is a subsequence of another sequence X = ⟨x₁, x₂,..., x_m⟩ if there is a strictly increasing sequence ⟨i₁,..., i_k⟩ of indices of X such that for all j = 1,..., k, x_{i_j} = z_j
- I.e., as one reads through Z, one can find a match to each symbol of Z in X, in order (though not necessarily contiguous)
- ► E.g., $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ since $z_1 = x_2$, $z_2 = x_3$, $z_3 = x_5$, and $z_4 = x_7$
- > Z is a **common subsequence** of X and Y if it is a subsequence of both
- ► The goal of the longest common subsequence problem is to find a maximum-length common subsequence (LCS) of sequences X = ⟨x₁, x₂,..., x_m⟩ and Y = ⟨y₁, y₂,..., y_n⟩

Step 1: Characterizing the Structure of an Optimal Solution

- Given sequence $X = \langle x_1, \ldots, x_m \rangle$, the *i*th **prefix** of X is $X_i = \langle x_1, \ldots, x_i \rangle$
- **Theorem** If $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$ have LCS $Z = \langle z_1, \dots, z_k \rangle$, then
 - 1. $x_m = y_n \Rightarrow z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1} and Y_{n-1}
 - If $z_k \neq x_m$, can lengthen Z, \Rightarrow contradiction
 - If Z_{k-1} not LCS of X_{m-1} and Y_{n-1}, then a longer CS of X_{m-1} and Y_{n-1} could have x_m appended to it to get CS of X and Y that is longer than Z, ⇒ contradiction
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - If z_k ≠ x_m, then Z is a CS of X_{m-1} and Y. Any CS of X_{m-1} and Y that is longer than Z would also be a longer CS for X and Y, ⇒ contradiction
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}
 - Similar argument to (2)

Step 2: Recursively Defining the Value of an Optimal Solution

- ► The theorem implies the kinds of subproblems that we'll investigate to find LCS of X = ⟨x₁,...,x_m⟩ and Y = ⟨y₁,...,y_n⟩
- ▶ If $x_m = y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m (= y_n) to it
- If x_m ≠ y_n, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one
- Let c[i,j] =length of LCS of X_i and Y_j

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j\\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

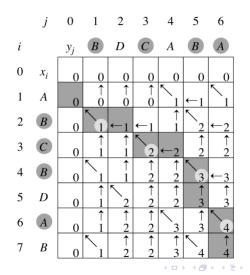
Step 3: LCS-Length(X, Y, m, n)

1 allocate $b[1 \dots m, 1 \dots n]$ and $c[0 \dots m, 0 \dots n]$ 2 initialize c[i, 0] = 0 and $c[0, i] = 0 \forall 0 \le i \le m$ and $0 \le i \le n$ for i = 1 to m do 3 for j = 1 to n do 4 if $x_i == y_i$ then 5 c[i,j] = c[i-1,j-1] + 16 $b[i, i] = " \leq "$ 7 else if $c[i - 1, j] \ge c[i, j - 1]$ then 8 c[i,j] = c[i-1,j]Q $b[i, i] = "^{\uparrow}"$ 10 else 11 c[i,j] = c[i,j-1] $b[i,j] = `` \leftarrow ``$ 12 13 14 end 15 end 16 return (c, b)

What is the time complexity?

Example

 $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$

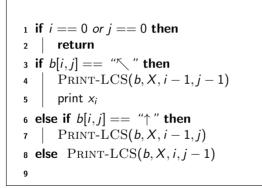


Step 4: Constructing an Optimal Solution from Computed Information

- Length of LCS is stored in c[m, n]
- To print LCS, start at b[m, n] and follow arrows until in row or column 0

- If in cell (i, j) on this path, when x_i = y_j (i.e., when arrow is "べ"), print x_i as part of the LCS
- This will print LCS backwards

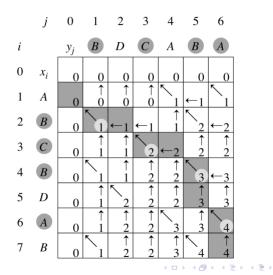
Print - $\mathsf{LCS}(b, X, i, j)$



What is the time complexity?

Example

 $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$, prints "BCBA"



37/44

2

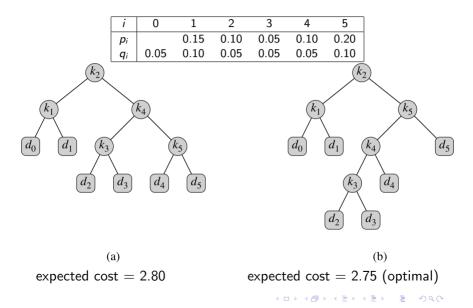
Optimal Binary Search Trees

- Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time
- Given a sequence $K = \langle k_1, \ldots, k_n \rangle$ of *n* distinct keys in sorted order
- Key k_i has probability p_i that it will be sought on a particular search
- ► To handle searches for values not in K, have n + 1 dummy keys d₀, d₁,..., d_n to serve as the tree's leaves
- Dummy key d_i will be reached with probability q_i
- If depth_T(k_i) is distance from root of k_i in tree T, then expected search cost of T is

$$1 + \sum_{i=1}^n p_i \operatorname{depth}_T(k_i) + \sum_{i=0}^n q_i \operatorname{depth}_T(d_i)$$

An optimal binary search tree is one with minimum expected search cost

Optimal Binary Search Trees (2)



Step 1: Characterizing the Structure of an Optimal Solution

- ▶ Observation: Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i,..., k_j and have leaves d_{i-1},..., d_j
- Thus, if an optimal BST T has a subtree T' over keys k_i,..., k_j, then T' is optimal for the subproblem consisting of only the keys k_i,..., k_i
 - ▶ If T' weren't optimal, then a lower-cost subtree could replace T' in T, \Rightarrow contradiction
- Given keys k_i, \ldots, k_j , say that its optimal BST roots at k_r for some $i \leq r \leq j$
- ► Thus if we make right choice for k_r and optimally solve the problem for k_i,..., k_{r-1} (with dummy keys d_{i-1},..., d_{r-1}) and the problem for k_{r+1},..., k_j (with dummy keys d_r,..., d_j), we'll end up with an optimal solution
- Since we don't know optimal k_r , we'll try them all

Step 2: Recursively Defining the Value of an Optimal Solution

- Define e[i, j] as the expected cost of searching an optimal BST built on keys k_i,..., k_j
- ▶ If j = i 1, then there is only the dummy key d_{i-1} , so $e[i, i-1] = q_{i-1}$
- If j ≥ i, then choose root k_r from k_i,..., k_j and optimally solve subproblems k_i,..., k_{r-1} and k_{r+1},..., k_j
- When combining the optimal trees from subproblems and making them children of k_r, we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- Define $w(i,j) = \sum_{\ell=i}^{j} p_{\ell} + \sum_{\ell=i-1}^{j} q_{\ell}$ as the sum of probabilities of the nodes in the subtree built on k_i, \ldots, k_j , and get

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

Recursively Defining the Value of an Optimal Solution (2)

Note that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

- Thus we can condense the equation to e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)
- Finally, since we don't know what k_r should be, we try them all:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

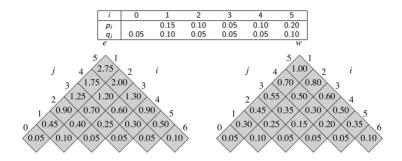
Will also maintain table root[i, j] = index r for which k_r is root of an optimal BST on keys k_i,..., k_j

Step 3: Optimal-BST(p, q, n)

1 allocate e[1 ... n + 1, 0 ... n], w[1 ... n + 1, 0 ... n], and root[1 ... n, 1 ... n]2 initialize $e[i, i-1] = w[i, i-1] = q_{i-1} \forall 1 \le i \le n+1$ 3 for $\ell = 1$ to n do for i = 1 to $n - \ell + 1$ do $i = i + \ell - 1$ 5 $e[i, i] = \infty$ 6 7 $w[i, j] = w[i, j - 1] + p_i + q_i$ for r = i to j do 8 t = e[i, r - 1] + e[r + 1, j] + w[i, j]9 if t < e[i, j] then 10 e[i, i] = t11 root[i, i] = r12 13 end 14 end 15 end 16 return (e. root)

What is the time complexity?

Example



root

