
1/44

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 03 — Dynamic Programming (Chapter 15)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

2/44

Introduction

I Dynamic programming is a technique for solving optimization problems

I Key element: Decompose a problem into subproblems, solve them
recursively, and then combine the solutions into a final (optimal) solution

I Important component: There are typically an exponential number of
subproblems to solve, but many of them overlap

⇒ Can re-use the solutions rather than re-solving them

I Number of distinct subproblems is polynomial

3/44

Rod Cutting (1)

I A company has a rod of length n and wants to cut it into smaller rods to
maximize profit

I Have a table telling how much they get for rods of various lengths: A
rod of length i has price pi

I The cuts themselves are free, so profit is based solely on the prices
charged for of the rods

I If cuts only occur at integral boundaries 1, 2, . . . , n − 1, then can make
or not make a cut at each of n− 1 positions, so total number of possible
solutions is 2n−1

4/44

Rod Cutting (2)

i 1 2 3 4 5 6 7 8 9 10

pi 1 5 8 9 10 17 17 20 24 30

5/44

Rod Cutting (3)

I Given a rod of length n, want to find a set of cuts into lengths i1, . . . , ik
(where i1 + · · ·+ ik = n) and revenue rn = pi1 + · · ·+ pik is maximized

I For a specific value of n, can either make no cuts (revenue = pn) or
make a cut at some position i , then optimally solve the problem for
lengths i and n − i :

rn = max (pn, r1 + rn−1, r2 + rn−2, . . . , ri + rn−i , . . . , rn−1 + r1)

I Notice that this problem has the optimal substructure property, in
that an optimal solution is made up of optimal solutions to subproblems

I Easy to prove via contradiction (How?)
⇒ Can find optimal solution if we consider all possible subproblems

I Alternative formulation: Don’t further cut the first segment:

rn = max
1≤i≤n

(pi + rn−i)

6/44

Cut-Rod(p, n)

1 if n == 0 then
2 return 0

3 q = −∞
4 for i = 1 to n do
5 q = max (q, p[i] + Cut-Rod(p, n − i))

6 end

7 return q

7/44

Time Complexity

I Let T (n) be number of calls to Cut-Rod

I Thus T (0) = 1 and, based on the for loop,

T (n) = 1 +
n−1∑
j=0

T (j) = 2n

I Why exponential? Cut-Rod exploits the optimal substructure property,
but repeats work on these subproblems

I E.g., if the first call is for n = 4, then there will be:
I 1 call to Cut-Rod(4)
I 1 call to Cut-Rod(3)
I 2 calls to Cut-Rod(2)
I 4 calls to Cut-Rod(1)
I 8 calls to Cut-Rod(0)

8/44

Time Complexity (2)

Recursion Tree for n = 4

9/44

Dynamic Programming Algorithm

I Can save time dramatically by remembering results from prior calls
I Two general approaches:

1. Top-down with memoization: Run the recursive algorithm as defined
earlier, but before recursive call, check to see if the calculation has already
been done and memoized

2. Bottom-up: Fill in results for “small” subproblems first, then use these to
fill in table for “larger” ones

I Typically have the same asymptotic running time

10/44

Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0 then
2 return r [n] // r initialized to all −∞
3 if n == 0 then
4 q = 0

5 else
6 q = −∞
7 for i = 1 to n do
8 q =

max (q, p[i] +Memoized-Cut-Rod-Aux(p, n − i , r))

9 end

10 r [n] = q

11 return q

11/44

Bottom-Up-Cut-Rod(p, n)

1 Allocate r [0 . . . n]

2 r [0] = 0

3 for j = 1 to n do
4 q = −∞
5 for i = 1 to j do
6 q = max (q, p[i] + r [j − i])

7 end

8 r [j] = q

9 end

10 return r [n]

First solves for n = 0, then for n = 1 in terms of r [0], then for n = 2 in terms
of r [0] and r [1], etc.

12/44

Example

i 1 2 3 4 5 6 7 8 9 10

pi 1 5 8 9 10 17 17 20 24 30

j = 1 j = 4

i = 1 p1 + r0 = 1 = r1 i = 1 p1 + r3 = 1 + 8 = 9

j = 2 i = 2 p2 + r2 = 5 + 5 = 10 = r4
i = 1 p1 + r1 = 2 i = 3 p3 + r1 + 8 + 1 = 9

i = 2 p2 + r0 = 5 = r2 i = 4 p4 + r0 = 9 + 0 = 9

j = 3
i = 1 p1 + r2 = 1 + 5 = 6
i = 2 p2 + r1 = 5 + 1 = 6

i = 3 p3 + r0 = 8 + 0 = 8 = r3

13/44

Time Complexity

Subproblem graph for n = 4

Both algorithms take linear time to solve for each value of n, so total time
complexity is Θ(n2)

14/44

Reconstructing a Solution

I If interested in the set of cuts for an optimal solution as well as the
revenue it generates, just keep track of the choice made to optimize each
subproblem

I Will add a second array s, which keeps track of the optimal size of the
first piece cut in each subproblem

15/44

Extended-Bottom-Up-Cut-Rod(p, n)

1 Allocate r [0 . . . n] and s[0 . . . n]

2 r [0] = 0

3 for j = 1 to n do
4 q = −∞
5 for i = 1 to j do
6 if q < p[i] + r [j − i] then
7 q = p[i] + r [j − i]

8 s[j] = i

9 end

10 r [j] = q

11 end

12 return r , s

16/44

Print-Cut-Rod-Solution(p, n)

1 (r , s) = Extended-Bottom-Up-Cut-Rod(p, n)

2 while n > 0 do
3 print s[n]

4 n = n − s[n]

5 end

Example:

i 0 1 2 3 4 5 6 7 8 9 10

r [i] 0 1 5 8 10 13 17 18 22 25 30

s[i] 0 1 2 3 2 2 6 1 2 3 10

If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments
of sizes 1 and 6

17/44

Matrix-Chain Multiplication (1)

I Given a chain of matrices 〈A1, . . . ,An〉, goal is to compute their product
A1 · · ·An

I This operation is associative, so can sequence the multiplications in
multiple ways and get the same result

I Can cause dramatic changes in number of operations required

I Multiplying a p × q matrix by a q × r matrix requires pqr steps and
yields a p × r matrix for future multiplications

I E.g., Let A1 be 10× 100, A2 be 100× 5, and A3 be 5× 50

1. Computing ((A1A2)A3) requires 10 · 100 · 5 = 5000 steps to compute
(A1A2) (yielding a 10× 5), and then 10 · 5 · 50 = 2500 steps to finish, for
a total of 7500

2. Computing (A1(A2A3)) requires 100 · 5 · 50 = 25000 steps to compute
(A2A3) (yielding a 100× 50), and then 10 · 100 · 50 = 50000 steps to
finish, for a total of 75000

18/44

Matrix-Chain Multiplication (2)

I The matrix-chain multiplication problem is to take a chain
〈A1, . . . ,An〉 of n matrices, where matrix i has dimension pi−1 × pi , and
fully parenthesize the product A1 · · ·An so that the number of scalar
multiplications is minimized

I Brute force solution is infeasible, since its time complexity is Ω
(
4n/n3/2

)
I We will follow 4-step procedure for dynamic programming:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
4. Construct an optimal solution from computed information

19/44

Step 1: Characterizing the Structure of an Optimal Solution

I Let Ai ...j be the matrix from the product AiAi+1 · · ·Aj

I To compute Ai ...j , must split the product and compute Ai ...k and Ak+1...j

for some integer k , then multiply the two together

I Cost is the cost of computing each subproduct plus cost of multiplying
the two results

I Say that in an optimal parenthesization, the optimal split for
AiAi+1 · · ·Aj is at k

I Then in an optimal solution for AiAi+1 · · ·Aj , the parenthisization of
Ai · · ·Ak is itself optimal for the subchain Ai · · ·Ak (if not, then we
could do better for the larger chain, i.e., proof by contradiction)

I Similar argument for Ak+1 · · ·Aj

I Thus if we make the right choice for k and then optimally solve the
subproblems recursively, we’ll end up with an optimal solution

I Since we don’t know optimal k , we’ll try them all

20/44

Step 2: Recursively Defining the Value of an Optimal Solution

I Define m[i , j] as minimum number of scalar multiplications needed to
compute Ai ...j

I (What entry in the m table will be our final answer?)
I Computing m[i , j]:

1. If i = j , then no operations needed and m[i , i] = 0 for all i
2. If i < j and we split at k , then optimal number of operations needed is the

optimal number for computing Ai...k and Ak+1...j , plus the number to
multiply them:

m[i , j] = m[i , k] + m[k + 1, j] + pi−1pkpj

3. Since we don’t know k , we’ll try all possible values:

m[i , j] =

{
0 if i = j
mini≤k<j{m[i , k] + m[k + 1, j] + pi−1pkpj} if i < j

I To track the optimal solution itself, define s[i , j] to be the value of k
used at each split

21/44

Step 3: Computing the Value of an Optimal Solution

I As with the rod cutting problem, many of the subproblems we’ve defined
will overlap

I Exploiting overlap allows us to solve only Θ(n2) problems (one problem
for each (i , j) pair), as opposed to exponential

I We’ll do a bottom-up implementation, based on chain length

I Chains of length 1 are trivially solved (m[i , i] = 0 for all i)

I Then solve chains of length 2, 3, etc., up to length n

I Linear time to solve each problem, quadratic number of problems, yields
O(n3) total time

22/44

Matrix-Chain-Order(p, n)

1 allocate m[1 . . . n, 1 . . . n] and s[1 . . . n, 1 . . . n]

2 initialize m[i , i] = 0 ∀ 1 ≤ i ≤ n

3 for ` = 2 to n do
4 for i = 1 to n − `+ 1 do
5 j = i + `− 1

6 m[i , j] =∞
7 for k = i to j − 1 do
8 q = m[i , k] +m[k + 1, j] + pi−1pkpj

9 if q < m[i , j] then
10 m[i , j] = q

11 s[i , j] = k

12 end

13 end

14 end

15 return (m, s)

23/44

Example

matrix A1 A2 A3 A4 A5 A6

dimension 30× 35 35× 15 15× 5 5× 10 10× 20 20× 25

pi p0 × p1 p1 × p2 p2 × p3 p3 × p4 p4 × p5 p5 × p6

24/44

Step 4: Constructing an Optimal Solution from Computed
Information

I Cost of optimal parenthesization is stored in m[1, n]

I First split in optimal parenthesization is between s[1, n] and s[1, n] + 1

I Descending recursively, next splits are between s[1, s[1, n]] and
s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and
s[s[1, n] + 1, n] + 1 for right side

I and so on...

25/44

Print-Optimal-Parens(s, i , j)

1 if i == j then
2 print “A”i

3 else
4 print “(”

5 Print-Optimal-Parens(s, i , s[i , j])

6 Print-Optimal-Parens(s, s[i , j] + 1, j)

7 print “)”

26/44

Example

Optimal parenthesization: ((A1(A2A3))((A4A5)A6))

27/44

Example of How Subproblems Overlap

Entire subtrees overlap:

See Section 15.3 for more on optimal substructure and overlapping
subproblems

28/44

Aside: More on Optimal Substructure

I The shortest path problem is to find a shortest
path between two nodes in a graph

I The longest simple path problem is to find a
longest simple path between two nodes in a graph

I Does the shortest path problem have optimal substructure? Explain

I What about longest simple path?

29/44

Aside: More on Optimal Substructure (2)

I No, LSP does not have optimal substructure

I A SLP from q to t is q → r → t

I But q → r is not a SLP from q to r

I What happened?

I The subproblems are not independent: SLP q → s → t → r from q to
r uses up all the vertices, so we cannot independently solve SLP from r
to t and combine them

I In contrast, SP subproblems don’t share resources: can combine any SP
u w with any SP w v to get a SP from u to v

I In fact, the SLP problem is NP-complete, so probably no efficient
algorithm exists

30/44

Longest Common Subsequence

I Sequence Z = 〈z1, z2, . . . , zk〉 is a subsequence of another sequence
X = 〈x1, x2, . . . , xm〉 if there is a strictly increasing sequence 〈i1, . . . , ik〉
of indices of X such that for all j = 1, . . . , k, xij = zj

I I.e., as one reads through Z , one can find a match to each symbol of Z
in X , in order (though not necessarily contiguous)

I E.g., Z = 〈B,C ,D,B〉 is a subsequence of X = 〈A,B,C ,B,D,A,B〉
since z1 = x2, z2 = x3, z3 = x5, and z4 = x7

I Z is a common subsequence of X and Y if it is a subsequence of both

I The goal of the longest common subsequence problem is to find a
maximum-length common subsequence (LCS) of sequences
X = 〈x1, x2, . . . , xm〉 and Y = 〈y1, y2, . . . , yn〉

31/44

Step 1: Characterizing the Structure of an Optimal Solution

I Given sequence X = 〈x1, . . . , xm〉, the ith prefix of X is Xi = 〈x1, . . . , xi 〉
I Theorem If X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉 have LCS

Z = 〈z1, . . . , zk〉, then
1. xm = yn ⇒ zk = xm = yn and Zk−1 is LCS of Xm−1 and Yn−1

I If zk 6= xm, can lengthen Z , ⇒ contradiction
I If Zk−1 not LCS of Xm−1 and Yn−1, then a longer CS of Xm−1 and Yn−1

could have xm appended to it to get CS of X and Y that is longer than Z ,
⇒ contradiction

2. If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y
I If zk 6= xm, then Z is a CS of Xm−1 and Y . Any CS of Xm−1 and Y that is

longer than Z would also be a longer CS for X and Y , ⇒ contradiction

3. If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1
I Similar argument to (2)

32/44

Step 2: Recursively Defining the Value of an Optimal Solution

I The theorem implies the kinds of subproblems that we’ll investigate to
find LCS of X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉

I If xm = yn, then find LCS of Xm−1 and Yn−1 and append xm (= yn) to it

I If xm 6= yn, then find LCS of X and Yn−1 and find LCS of Xm−1 and Y
and identify the longest one

I Let c[i , j] = length of LCS of Xi and Yj

c[i , j] =

0 if i = 0 or j = 0
c[i − 1, j − 1] + 1 if i , j > 0 and xi = yj
max (c[i , j − 1], c[i − 1, j]) if i , j > 0 and xi 6= yj

33/44

Step 3: LCS-Length(X ,Y ,m, n)

1 allocate b[1 . . .m, 1 . . . n] and c[0 . . .m, 0 . . . n]

2 initialize c[i , 0] = 0 and c[0, j] = 0 ∀ 0 ≤ i ≤ m and 0 ≤ j ≤ n

3 for i = 1 to m do
4 for j = 1 to n do
5 if xi == yj then
6 c[i , j] = c[i − 1, j − 1] + 1

7 b[i , j] = “↖ ”

8 else if c[i − 1, j] ≥ c[i , j − 1] then
9 c[i , j] = c[i − 1, j]

10 b[i , j] = “ ↑ ”
11 else
12 c[i , j] = c[i , j − 1]

13 b[i , j] = “← ”

14 end

15 end

16 return (c, b)

What is the time complexity?

34/44

Example
X = 〈A,B,C ,B,D,A,B〉, Y = 〈B,D,C ,A,B,A〉

35/44

Step 4: Constructing an Optimal Solution from Computed
Information

I Length of LCS is stored in c[m, n]

I To print LCS, start at b[m, n] and follow arrows until in row or column 0

I If in cell (i , j) on this path, when xi = yj (i.e., when arrow is “↖ ”),
print xi as part of the LCS

I This will print LCS backwards

36/44

Print-LCS(b,X , i , j)

1 if i == 0 or j == 0 then
2 return

3 if b[i , j] == “↖ ” then
4 Print-LCS(b,X , i − 1, j − 1)

5 print xi

6 else if b[i , j] == “ ↑ ” then
7 Print-LCS(b,X , i − 1, j)

8 else Print-LCS(b,X , i , j − 1)

9

What is the time complexity?

37/44

Example
X = 〈A,B,C ,B,D,A,B〉, Y = 〈B,D,C ,A,B,A〉, prints “BCBA”

38/44

Optimal Binary Search Trees

I Goal is to construct binary search trees such that most frequently sought
values are near the root, thus minimizing expected search time

I Given a sequence K = 〈k1, . . . , kn〉 of n distinct keys in sorted order

I Key ki has probability pi that it will be sought on a particular search

I To handle searches for values not in K , have n + 1 dummy keys
d0, d1, . . . , dn to serve as the tree’s leaves

I Dummy key di will be reached with probability qi
I If depthT (ki) is distance from root of ki in tree T , then expected search

cost of T is

1 +
n∑

i=1

pi depthT (ki) +
n∑

i=0

qi depthT (di)

I An optimal binary search tree is one with minimum expected search
cost

39/44

Optimal Binary Search Trees (2)

i 0 1 2 3 4 5

pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

expected cost = 2.80 expected cost = 2.75 (optimal)

40/44

Step 1: Characterizing the Structure of an Optimal Solution

I Observation: Since K is sorted and dummy keys interspersed in order,
any subtree of a BST must contain keys in a contiguous range ki , . . . , kj
and have leaves di−1, . . . , dj

I Thus, if an optimal BST T has a subtree T ′ over keys ki , . . . , kj , then
T ′ is optimal for the subproblem consisting of only the keys ki , . . . , kj

I If T ′ weren’t optimal, then a lower-cost subtree could replace T ′ in T , ⇒
contradiction

I Given keys ki , . . . , kj , say that its optimal BST roots at kr for some
i ≤ r ≤ j

I Thus if we make right choice for kr and optimally solve the problem for
ki , . . . , kr−1 (with dummy keys di−1, . . . , dr−1) and the problem for
kr+1, . . . , kj (with dummy keys dr , . . . , dj), we’ll end up with an optimal
solution

I Since we don’t know optimal kr , we’ll try them all

41/44

Step 2: Recursively Defining the Value of an Optimal Solution

I Define e[i , j] as the expected cost of searching an optimal BST built on
keys ki , . . . , kj

I If j = i − 1, then there is only the dummy key di−1, so e[i , i − 1] = qi−1
I If j ≥ i , then choose root kr from ki , . . . , kj and optimally solve

subproblems ki , . . . , kr−1 and kr+1, . . . , kj
I When combining the optimal trees from subproblems and making them

children of kr , we increase their depth by 1, which increases the cost of
each by the sum of the probabilities of its nodes

I Define w(i , j) =
∑j

`=i p` +
∑j

`=i−1 q` as the sum of probabilities of the
nodes in the subtree built on ki , . . . , kj , and get

e[i , j] = pr + (e[i , r − 1] + w(i , r − 1)) + (e[r + 1, j] + w(r + 1, j))

42/44

Recursively Defining the Value of an Optimal Solution (2)

I Note that
w(i , j) = w(i , r − 1) + pr + w(r + 1, j)

I Thus we can condense the equation to
e[i , j] = e[i , r − 1] + e[r + 1, j] + w(i , j)

I Finally, since we don’t know what kr should be, we try them all:

e[i , j] =

{
qi−1 if j = i − 1
mini≤r≤j{e[i , r − 1] + e[r + 1, j] + w(i , j)} if i ≤ j

I Will also maintain table root[i , j] = index r for which kr is root of an
optimal BST on keys ki , . . . , kj

43/44

Step 3: Optimal-BST(p, q, n)

1 allocate e[1 . . . n + 1, 0 . . . n], w [1 . . . n + 1, 0 . . . n], and root[1 . . . n, 1 . . . n]

2 initialize e[i, i − 1] = w [i, i − 1] = qi−1 ∀ 1 ≤ i ≤ n + 1

3 for ` = 1 to n do
4 for i = 1 to n − ` + 1 do
5 j = i + `− 1

6 e[i, j] =∞
7 w [i, j] = w [i, j − 1] + pj + qj

8 for r = i to j do
9 t = e[i, r − 1] + e[r + 1, j] + w [i, j]

10 if t < e[i, j] then
11 e[i, j] = t

12 root[i, j] = r

13 end

14 end

15 end

16 return (e, root)

What is the time complexity?

44/44

Example

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

	Introduction
	Rod Cutting
	Recursive Algorithm
	Dynamic Programming Algorithm
	Reconstructing a Solution

	Matrix-Chain Multiplication
	Characterizing Structure
	Recursive Definition
	Computing Optimal Value
	Constructing Optimal Solution
	Overalapping Subproblems

	More on Optimal Substructure
	Longest Common Subsequence
	Characterizing Structure
	Recursive Definition
	Computing Optimal Value
	Constructing Optimal Solution

	Optimal Binary Search Trees
	Characterizing Structure
	Recursive Definition
	Computing Optimal Value

