
1/24

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 02 — Medians and Order Statistics (Chapter 9)

Stephen Scott and Vinod Variyam

sscott@cse.unl.edu

2/24

Introduction

I Given an array A of n distinct numbers, the ith order statistic of A is
its ith smallest element

I i = 1 ) minimum
I i = n ) maximum
I i = b(n + 1)/2c ) (lower) median

I E.g. if A = [8, 5, 3, 10, 4, 12, 6] then min = 3, max = 12, median = 6,
3rd order stat = 5

I Problem: Given array A of n elements and a number i 2 {1, . . . , n},
find the ith order statistic of A

I There is an obvious solution to this problem. What is it? What is its
time complexity?

I Can we do better? What if we only focus on i = 1 or i = n?

3/24

Minimum(A)

1 small = A[1]

2 for i = 2 to n do
3 if small > A[i ] then
4 small = A[i ]

5

6 end

7 return small

4/24

E�ciency of Minimum(A)

I Loop is executed n � 1 times, each with one comparison
) Total n � 1 comparisons

I Can we do better? NO!
I Lower Bound: Any algorithm finding minimum of n elements will need

at least n � 1 comparisons
I Proof of this comes from fact that no element of A can be considered for

elimination as the minimum until it’s been shown to be greater than at
least one other element

I Imagine that all elements still eligible to be smallest are in a bucket, and
are removed only after it is shown to be > some other element

I Since each comparison removes at most one element from the bucket, at
least n � 1 comparisons are needed to remove all but one from the bucket

5/24

Correctness of Minimum(A)

I Observe that the algorithm always maintains the invariant that at the
end of each loop iteration, small holds the minimum of A[1 · · · i ]

I Easily shown by induction

I Correctness follows by observing that i == n before return statement

6/24

Simultaneous Minimum and Maximum

I Given array A with n elements, find both its minimum and maximum

I What is the obvious algorithm? What is its (non-asymptotic) time
complexity?

I Can we do better?



7/24

MinAndMax(A, n)

1 large = max(A[1],A[2])

2 small = min(A[1],A[2])

3 for i = 2 to bn/2c do
4 large = max(large,max(A[2i � 1],A[2i ]))

5 small = min(small ,min(A[2i � 1],A[2i ]))

6 end

7 if n is odd then
8 large = max(large,A[n])

9 small = min(small ,A[n])

10 return (large, small)

8/24

Explanation of MinAndMax

I Idea: For each pair of values examined in the loop, compare them
directly

I For each such pair, compare the smaller one to small and the larger one
to large

I Example: A = [8, 5, 3, 10, 4, 12, 6]
I Initialization: large = 8, small = 5
I Compare 3 to 10: large = max(8, 10) = 10, small = min(5, 3) = 3
I Compare 4 to 12: large = max(10, 12) = 12, small = min(3, 4) = 3
I Final: large = max(12, 6) = 12, small = min(3, 6) = 3

9/24

E�ciency of MinAndMax

I How many comparisons does MinAndMax make?

I Initialization on Lines 1 and 2 requires only one comparison

I Each iteration through the loop requires one comparison between
A[2i � 1] and A[2i ] and then one comparison to each of large and small ,
for a total of three

I Lines 8 and 9 require one comparison each

I Total is at most 1 + 3(bn/2c � 1) + 2  3bn/2c, which is better than
2n � 3 for finding minimum and maximum separately

10/24

Selection of the ith Smallest Value

I Now to the general problem: Given A and i , return the ith smallest value
in A

I Obvious solution is sort and return ith element

I Time complexity is ⇥(n log n)

I Can we do better?

11/24

Selection of the ith Smallest Value (2)

I New algorithm: Divide and conquer strategy
I Idea: Somehow discard a constant fraction of the current array after

spending only linear time
I If we do that, we’ll get a better time complexity
I More on this later

I Which fraction do we discard?

12/24

Select(A, p, r , i)

1 if p == r then
2 return A[p]

3 q = Partition(A, p, r) // Like Partition in Quicksort

4 k = q � p + 1 // Size of A[p · · · q]
5 if i == k then
6 return A[q] // Pivot value is the answer

7 else if i < k then
8 return Select(A, p, q � 1, i) // Answer is in left subarray

9 else
10 return Select(A, q + 1, r , i � k) // Answer is in right subarray

11

Returns ith smallest element from A[p · · · r ]



13/24

What is Select Doing?

I Like in Quicksort, Select first calls Partition, which chooses a pivot
element q, then reorders A to put all elements < A[q] to the left of
A[q] and all elements > A[q] to the right of A[q]

I E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is
A0 = [1, 4, 2, 3, 5, 7, 8, 6]

I If A[q] is the element we seek, then return it

I If sought element is in left subarray, then recursively search it, and ignore
right subarray

I If sought element is in right subarray, then recursively search it, and
ignore left subarray

14/24

Partition(A, p, r)

1 x = ChoosePivotElement(A, p, r) // Returns index of pivot

2 exchange A[x] with A[r ]

3 i = p � 1

4 for j = p to r � 1 do
5 if A[j ]  A[r ] then
6 i = i + 1

7 exchange A[i ] with A[j ]

8

9 end

10 exchange A[i + 1] with A[r ]

11 return i + 1

Chooses a pivot element and partitions A[p · · · r ] around it

15/24

Partitioning the Array: Example (Fig 7.1)

Compare each element A[j ] to x (= 4) and swap with A[i ] if A[j ]  x

16/24

Choosing a Pivot Element

I Choice of pivot element is critical to low time complexity

I Why?

I What is the best choice of pivot element to partition A[p · · · r ]?

17/24

Choosing a Pivot Element (2)

I Want to pivot on an element that it as close as possible to being the
median

I Of course, we don’t know what that is

I Will do median of medians approach to select pivot element

18/24

Median of Medians

I Given (sub)array A of n elements, partition A into m = bn/5c groups of
5 elements each, and at most one other group with the remaining n
mod 5 elements

I Make an array A0 = [x
1

, x
2

, . . . , xdn/5e], where x
i

is median of group i ,
found by sorting (in constant time) group i

I Call Select(A0, 1, dn/5e, b(dn/5e+ 1)/2c) and use the returned element
as the pivot



19/24

Example

I Outside of class, get with your team and work this example: Find the
4th smallest element of A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]

I Show results for each step of Select, Partition, and ChoosePivotElement

I Good practice for the quiz!

20/24

Time Complexity

I Key to time complexity analysis is lower bounding the fraction of
elements discarded at each recursive call to Select

I On next slide, medians and median (x) of medians are marked, arrows
indicate what is guaranteed to be greater than what

I Since x is less than at least half of the other medians (ignoring group
with < 5 elements and x ’s group) and each of those medians is less than
2 elements, we get that the number of elements x is less than is at least

3

✓⇠
1

2

ln
5

m⇡
� 2

◆
� 3n

10
� 6 � n/4 (if n � 120)

I Similar argument shows that at least 3n/10� 6 � n/4 elements are less
than x

I Thus, if n � 120, each recursive call to Select is on at most 3n/4
elements

21/24

Time Complexity (2)

22/24

Time Complexity (3)

I Now can develop a recurrence describing Select’s time complexity

I Let T (n) represent total time for Select to run on input of size n

I Choosing a pivot element takes time O(n) to split into size-5 groups and
time T (n/5) to recursively find the median of medians

I Once pivot element chosen, partitioning n elements takes O(n) time

I Recursive call to Select takes time at most T (3n/4)

I Thus we get
T (n)  T (n/5) + T (3n/4) + O(n)

I Can express as T (↵n) + T (�n) + O(n) for ↵ = 1/5 and � = 3/4

I Theorem: For recurrences of the form T (↵n) + T (�n) + O(n) for
↵+ � < 1, T (n) = O(n)

I Thus Select has time complexity O(n)

23/24

Proof of Theorem

Top T (n) takes O(n) time (= cn for some constant c). Then calls to T (↵n) and
T (�n), which take a total of (↵+ �)cn time, and so on.

Summing these infinitely yields (since
↵+ � < 1)

cn(1 + (↵+ �) + (↵+ �)2 + · · · ) = cn

1� (↵+ �)
= c 0n = O(n)

24/24

Master Method

I Another useful tool for analyzing recurrences
I Theorem: Let a � 1 and b > 1 be constants, let f (n) be a function,

and let T (n) be defined as T (n) = aT (n/b) + f (n). Then T (n) is
bounded as follows.
1. If f (n) = O(nlogb a�✏) for constant ✏ > 0, then T (n) = ⇥(nlogb a)
2. If f (n) = ⇥(nlogb a), then T (n) = ⇥(nlogb a log n)
3. If f (n) = ⌦(nlogb a+✏) for constant ✏ > 0, and if af (n/b)  cf (n) for

constant c < 1 and su�ciently large n, then T (n) = ⇥(f (n))

I E.g. for Select, can apply theorem on T (n) < 2T (3n/4) + O(n) (note
the slack introduced) with a = 2, b = 4/3, ✏ = 1.4 and get

T (n) = O
⇣
nlog4/3 2

⌘
= O

�
n2.41

�

) Not as tight for this recurrence


