

MinAndMax(A, n)

$_{1}$ large = max(A[1], A[2])				
$small = \min(A[1], A[2])$				
3 for $i = 2$ to $\lfloor n/2 \rfloor$ do				
$ large = \max(large, \max(A[2i-1], A[2i]))$				
s $small = min(small, min(A[2i - 1], A[2i]))$				
6 end				
7 if n is odd then				
$ large = \max(large, A[n])$				
small = min(small, A[n])				
10 return (large, small)				

Explanation of MinAndMax

- Idea: For each pair of values examined in the loop, compare them directly
- ▶ For each such pair, compare the smaller one to *small* and the larger one to *large*
- Example: *A* = [8, 5, 3, 10, 4, 12, 6]
 - Initialization: large = 8, small = 5
 - Compare 3 to 10: large = max(8, 10) = 10, small = min(5, 3) = 3

- Compare 4 to 12: large = max(10, 12) = 12, small = min(3, 4) = 3
- Final: large = max(12, 6) = 12, small = min(3, 6) = 3

Efficiency of MinAndMax

- How many comparisons does MinAndMax make?
- Initialization on Lines 1 and 2 requires only one comparison
- ► Each iteration through the loop requires one comparison between A[2i 1] and A[2i] and then one comparison to each of *large* and *small*, for a total of three
- Lines 8 and 9 require one comparison each
- ▶ Total is at most $1+3(\lfloor n/2 \rfloor -1)+2 \le 3\lfloor n/2 \rfloor$, which is better than 2n-3 for finding minimum and maximum separately

<ロ> <西> <西> < き> < き> < き> < き < のへの

Selection of the *i*th Smallest Value

- ▶ Now to the general problem: Given A and i, return the *i*th smallest value in A
- Obvious solution is sort and return *i*th element
- Time complexity is $\Theta(n \log n)$
- Can we do better?

Selection of the *i*th Smallest Value (2)

- ► New algorithm: Divide and conquer strategy
- Idea: Somehow discard a constant fraction of the current array after spending only linear time
 - If we do that, we'll get a better time complexity More on this later
- Which fraction do we discard?

Select(A, p, r, i)

- 1 if p == r then 2 | return A[p]3 q = Partition(A, p, r) // Like Partition in Quicksort4 $k = q - p + 1 // Size of <math>A[p \cdots q]$ 5 if i == k then
- 6 | return A[q] // Pivot value is the answer 7 else if i < k then
- 8 | return Select(A, p, q 1, i) // Answer is in left subarray
- 9 else
 - 10 | return Select(A, q + 1, r, i k) // Answer is in right subarray

Returns *i*th smallest element from $A[p \cdots r]$

What is Select Doing?

- ► Like in Quicksort, Select first calls Partition, which chooses a pivot element *q*, then reorders *A* to put all elements < *A*[*q*] to the left of *A*[*q*] and all elements > *A*[*q*] to the right of *A*[*q*]
- E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is A' = [1, 4, 2, 3, 5, 7, 8, 6]
- If A[q] is the element we seek, then return it
- If sought element is in left subarray, then recursively search it, and ignore right subarray
- ▶ If sought element is in right subarray, then recursively search it, and ignore left subarray

<ロ><**の**><**の**><を、

<

<

<

<br

Partition(A, p, r)

1 x = ChoosePivotElement(A, p, r) // Returns index of pivot2 exchange A[x] with A[r]3 i = p - 14 for j = p to r - 1 do 5 | if $A[j] \le A[r]$ then 6 | i = i + 17 | exchange A[i] with A[j]8 | 9 end 10 exchange A[i + 1] with A[r]

11 return i+1Chooses a pivot element and partitions $A[p \cdots r]$ around it

Partitioning the Array: Example (Fig 7.1)

$\begin{array}{c} i & pj \\ 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\ pi & j & r \\ 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\ pi & j & r \\ 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\ pi & j & r \\ 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\ pi & j & r \\ 2 & 1 & 3 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 1 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\ p & i & j & r \\ 2 & 1 & 3 & 4 & 7 & 5 & 6 & 8 \\ \end{array}$	Compare each element $A[j]$ to x (= 4) and swap with $A[i]$ if $A[j] \leq x$		 Choice of pivot element is critical to low time complexity Why? What is the best choice of pivot element to partition A[p · · · r]?
	(ロ)(の)(さ)(さ)を、そうの(の)	15/24	<ロ> (ラ) くき> くき> き つなで 16/24

Choosing a Pivot Element (2)

- \blacktriangleright Want to pivot on an element that it as close as possible to being the median
- Of course, we don't know what that is
- Will do median of medians approach to select pivot element

Median of Medians

Choosing a Pivot Element

- ▶ Given (sub)array A of n elements, partition A into m = ⌊n/5⌋ groups of 5 elements each, and at most one other group with the remaining n mod 5 elements
- ▶ Make an array $A' = [x_1, x_2, ..., x_{\lceil n/5 \rceil}]$, where x_i is median of group i, found by sorting (in constant time) group i
- ▶ Call Select(A', 1, $\lceil n/5 \rceil$, $\lfloor (\lceil n/5 \rceil + 1)/2 \rfloor$) and use the returned element as the pivot

Example

- ▶ Outside of class, get with your team and work this example: Find the 4th smallest element of *A* = [4,9,12,17,6,5,21,14,8,11,13,29,3]
- Show results for each step of Select, Partition, and ChoosePivotElement

(ロ) (母) (E) (E) E の(の)

Good practice for the quiz!

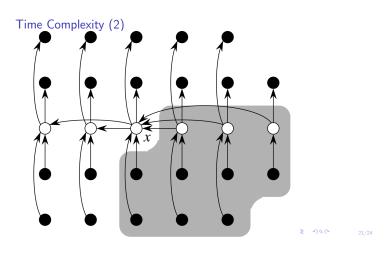
Time Complexity

- ► Key to time complexity analysis is lower bounding the fraction of elements discarded at each recursive call to Select
- On next slide, medians and median (x) of medians are marked, arrows indicate what is guaranteed to be greater than what
- Since x is less than at least half of the other medians (ignoring group with < 5 elements and x's group) and each of those medians is less than 2 elements, we get that the number of elements x is less than is at least

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right)\geq\frac{3n}{10}-6\geq n/4\qquad\text{(if }n\geq120\text{)}$$

- ▶ Similar argument shows that at least $3n/10 6 \ge n/4$ elements are less than x
- \blacktriangleright Thus, if $n \geq$ 120, each recursive call to Select is on at most 3n/4 elements

10 + (B) + (E) + (E) = 000

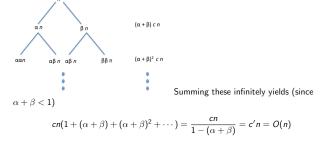


Time Complexity (3)

- Now can develop a recurrence describing Select's time complexity
- Let T(n) represent total time for Select to run on input of size n
- Choosing a pivot element takes time O(n) to split into size-5 groups and time T(n/5) to recursively find the median of medians
- Once pivot element chosen, partitioning n elements takes O(n) time
- Recursive call to Select takes time at most T(3n/4)
- Thus we get
 - $T(n) \leq T(n/5) + T(3n/4) + O(n)$
- Can express as $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha = 1/5$ and $\beta = 3/4$
- ▶ **Theorem:** For recurrences of the form $T(\alpha n) + T(\beta n) + O(n)$ for $\alpha + \beta < 1$, T(n) = O(n)
- Thus Select has time complexity O(n)

Proof of Theorem

Top T(n) takes O(n) time (= cn for some constant c). Then calls to $T(\alpha n)$ and $T(\beta n)$, which take a total of $(\alpha + \beta)cn$ time, and so on.



Master Method

- Another useful tool for analyzing recurrences
- ▶ **Theorem:** Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined as T(n) = aT(n/b) + f(n). Then T(n) is bounded as follows.
 - 1. If $f(n) = O(n^{\log_b a \epsilon})$ for constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_a a} \log n)$ 3. If $f(n) = \Omega(n^{\log_b a} + \epsilon)$ for constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for
 - 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for constant c < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$
- ▶ E.g. for Select, can apply theorem on T(n) < 2T(3n/4) + O(n) (note the slack introduced) with a = 2, b = 4/3, $\epsilon = 1.4$ and get $T(n) = O\left(n^{\log_4/3}2\right) = O\left(n^{2.41}\right)$
- $\Rightarrow\,$ Not as tight for this recurrence