
1/32

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 01 — Shall We Play A Game?

Stephen Scott and Vinod Variyam

sscott@cse.unl.edu

2/32

Introduction

I In this course, we assume that you have learned several fundamental
concepts on basic data structures and algorithms

I Let’s confirm this

I What do we mean ...

3/32

... when we say: “Asymptotic Notation”

I A convenient means to succinctly express the growth of functions
I Big-O
I Big-⌦
I Big-⇥
I Little-o
I Little-!

I Important distinctions between these (not interchangeable)

4/32

Asymptotic Notation

... when we say: “Big-O”

Asymptotic upper bound

O(g(n)) = {f (n) : 9c , n
0

> 0 s.t. 8n � n
0

, 0  f (n)  c g(n)}

Can very loosely and informally think of this as a “” relation between
functions

5/32

Asymptotic Notation

... when we say: “Big-⌦”

Asymptotic lower bound

⌦(g(n)) = {f (n) : 9c , n
0

> 0 s.t. 8n � n
0

, 0  c g(n)  f (n)}

Can very loosely and informally think of this as a “�” relation between
functions 6/32

Asymptotic Notation

... when we say: “Big-⇥”

Asymptotic tight bound

⇥(g(n)) = {f (n) : 9c
1

, c
2

, n
0

> 0 s.t. 8n � n
0

, 0  c
1

g(n)  f (n)  c
2

g(n)}

Can very loosely and informally think of this as a “=” relation between
functions

7/32

Asymptotic Notation

... when we say: “Little-o”

Upper bound, not asymptotically tight

o(g(n)) = {f (n) : 8c > 0, 9n
0

> 0 s.t. 8n � n
0

, 0  f (n) < c g(n)}

Upper inequality strict, and holds for all c > 0
Can very loosely and informally think of this as a “<” relation between
functions

8/32

Asymptotic Notation

... when we say: “Little-!”

Lower bound, not asymptotically tight

!(g(n)) = {f (n) : 8c > 0, 9n
0

> 0 s.t. 8n � n
0

, 0  c g(n) < f (n)}

f (n) 2 !(g(n)) , g(n) 2 o(f (n))
Can very loosely and informally think of this as a “>” relation between
functions

9/32

... when we say: “Upper and Lower Bounds”

I Most often, we analyze algorithms and problems in terms of time
complexity (number of operations)

I Sometimes we analyze in terms of space complexity (amount of
memory)

I Can think of upper and lower bounds of time/space for a specific
algorithm or a general problem

10/32

Upper and Lower Bounds

... when we say: “Upper Bound of an Algorithm”

I The most common form of analysis

I An algorithm A has an upper bound of f (n) for input of size n if there
exists no input of size n such that A requires more than f (n) time

I E.g., we know from prior courses that Quicksort and Bubblesort take no
more time than O(n2), while Mergesort has an upper bound of
O(n log n)

I (But why is Quicksort used more in practice?)

I Aside: An algorithm’s lower bound (not typically as interesting) is like a
best-case result

11/32

Upper and Lower Bounds

... when we say: “Upper Bound of a Problem”

I A problem has an upper bound of f (n) if there exists at least one
algorithm that has an upper bound of f (n)

I I.e., there exists an algorithm with time/space complexity of at most f (n)
on all inputs of size n

I E.g., since Mergesort has worst-case time complexity of O(n log n), the
problem of sorting has an upper bound of O(n log n)

I Sorting also has an upper bound of O(n2) thanks to Bubblesort and
Quicksort, but this is subsumed by the tighter bound of O(n log n)

12/32

Upper and Lower Bounds

... when we say: “Lower Bound of a Problem”

I A problem has a lower bound of f (n) if, for any algorithm A to solve
the problem, there exists at least one input of size n that forces A to
take at least f (n) time/space

I This pathological input depends on the specific algorithm A

I E.g., there is an input of size n (reverse order) that forces Bubblesort to
take ⌦(n2) steps

I Also e.g., there is a di↵erent input of size n that forces Mergesort to
take ⌦(n log n) steps, but none exists forcing !(n log n) steps

I Since every sorting algorithm has an input of size n forcing ⌦(n log n)
steps, the sorting problem has a time complexity lower bound of
⌦(n log n)

) Mergesort is asymptotically optimal

13/32

Upper and Lower Bounds

... when we say: “Lower Bound of a Problem” (2)

I To argue a lower bound for a problem, can use an adversarial argument:
An algorithm that simulates arbitrary algorithm A to build a
pathological input

I Needs to be in some general (algorithmic) form since the nature of the
pathological input depends on the specific algorithm A

I Can also reduce one problem to another to establish lower bounds
I Spoiler Alert: This semester we will show that if we can compute convex

hull in o(n log n) time, then we can also sort in time o(n log n); this
cannot be true, so convex hull takes time ⌦(n log n)

14/32

... when we say: “E�ciency”

I We say that an algorithm is time- or space-e�cient if its worst-case
time (space) complexity is O(nc) for constant c for input size n

I I.e., polynomial in the size of the input
I Note on input size: We measure the size of the input in terms of the

number of bits needed to represent it
I E.g., a graph of n nodes takes O(n log n) bits to represent the nodes and

O(n2 log n) bits to represent the edges
I Thus, an algorithm that runs in time O(nc) is e�cient

I In contrast, a problem that includes as an input a numeric parameter k
(e.g., threshold) only needs O(log k) bits to represent

I In this case, an e�cient algorithm for this problem must run in time
O(logc k)

I If instead polynomial in k, sometimes call this pseudopolynomial

15/32

... when we say: “Recurrence Relations”

I We know how to analyze non-recursive algorithms to get asymptotic
bounds on run time, but what about recursive ones like Mergesort and
Quicksort?

I We use a recurrence relation to capture the time complexity and then
bound the relation asymptotically

I E.g., Mergesort splits the input array of size n into two sub-arrays,
recursively sorts each, and then merges the two sorted lists into a single,
sorted one

I If T (n) is time for Mergesort on n elements,

T (n) = 2T (n/2) + O(n)

I Still need to get an asymptotic bound on T (n)

16/32

Recurrence Relations

... when we say: “Master Theorem” or “Master Method”

I Theorem: Let a � 1 and b > 1 be constants, let f (n) be a function,
and let T (n) be defined as T (n) = aT (n/b) + f (n). Then T (n) is
bounded as follows:

1. If f (n) = O(nlogb a�✏) for constant ✏ > 0, then T (n) = ⇥(nlogb a)
2. If f (n) = ⇥(nlogb a), then T (n) = ⇥(nlogb a log n)
3. If f (n) = ⌦(nlogb a+✏) for constant ✏ > 0, and if af (n/b)  cf (n) for

constant c < 1 and su�ciently large n, then T (n) = ⇥(f (n))

I E.g., for Mergesort, can apply theorem with a = b = 2, use case 2, and
get T (n) = ⇥

�
nlog2 2 log n

�
= ⇥ (n log n)

17/32

Recurrence Relations

Other Approaches

Theorem: For recurrences of the form T (↵n) + T (�n) + O(n) for ↵+ � < 1,
T (n) = O(n)

Proof: Top T (n) takes O(n) time (= cn for some constant c). Then calls to T (↵n)

and T (�n), which take a total of (↵+ �)cn time, and so on

Summing these infinitely yields (since ↵+ � < 1)

cn(1 + (↵+ �) + (↵+ �)2 + · · ·) = cn

1� (↵+ �)
= c 0n = O(n)

18/32

Recurrence Relations

Still Other Approaches

Previous theorem special case of recursion-tree method: (e.g., T (n) = 3T (n/4) + O(n2))

Another approach is substitution method (guess and prove via induction)

19/32

Graphs

... when we say: “(Undirected) Graph”

A (simple, or undirected) graph G = (V ,E) consists of V , a nonempty set
of vertices and E a set of unordered pairs of distinct vertices called edges

B

D E

CA

V={A,B,C,D,E}

E={ (A,D),(A,E),(B,D),

 (B,E),(C,D),(C,E)}

20/32

Graphs

... when we say: “Directed Graph”

A directed graph (digraph) G = (V ,E) consists of V , a nonempty set of
vertices and E a set of ordered pairs of distinct vertices called edges

21/32

Graphs

... when we say: “Weighted Graph”

A weighted graph is an undirected or directed graph with the additional
property that each edge e has associated with it a real number w(e) called
its weight

7

0

4
3

-6

3

12

22/32

Graphs

... when we say: “Representations of Graphs”

I Two common ways of representing a graph: Adjacency list and
adjacency matrix

I Let G = (V ,E) be a graph with n vertices and m edges

23/32

Graphs

... when we say: “Adjacency List”

I For each vertex v 2 V , store a list of vertices adjacent to v

I For weighted graphs, add information to each node

I How much is space required for storage?

a

e

b c d

a e

a d c

a c e

b c d

d

b

d e

c

a

b

c

24/32

Graphs

... when we say: “Adjacency Matrix”

I Use an n⇥ n matrix M, where M(i , j) = 1 if (i , j) is an edge, 0 otherwise

I If G weighted, store weights in the matrix, using 1 for non-edges

I How much is space required for storage?

c

ed

ba

d

c

b

a
a b c d e

e 0 1 1 1 0

1 0 1 0 1

1 0 0 1 1

1 0 0 0 1

0 1 1 1 0

25/32

Algorithmic Techniques

... when we say: “Dynamic Programming”

I Dynamic programming is a technique for solving optimization
problems, where we need to choose a “best” solution, as evaluated by
an objective function

I Key element: Decompose a problem into subproblems, optimally solve
them recursively, and then combine the solutions into a final (optimal)
solution

I Important component: There are typically an exponential number of
subproblems to solve, but many of them overlap

) Can re-use the solutions rather than re-solving them

I Number of distinct subproblems is polynomial
I Works for problems that have the optimal substructure property, in

that an optimal solution is made up of optimal solutions to subproblems
I Can find optimal solution if we consider all possible subproblems

I Example: All-pairs shortest paths
26/32

Algorithmic Techniques

... when we say: “Greedy Algorithms”

I Another optimization technique

I Similar to dynamic programming in that we examine subproblems,
exploiting optimial substructure property

I Key di↵erence: In dynamic programming we considered all possible
subproblems

I In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal choice)

I Examples: Minimum spanning tree, single-source shortest paths

27/32

Algorithmic Techniques

... when we say: “Divide and Conquer”

I An algorithmic approach (not limited to optimization) that splits a
problem into sub-problems, solves each sub-problem recursively, and then
combines the solutions into a final solution

I E.g., Mergesort splits input array of size n into two arrays of sizes dn/2e
and bn/2c, sorts them, and merges the two sorted lists into a single
sorted list in O(n) time

I Recursion bottoms out for n = 1

I Such algorithms often analyzed via recurrence relations

28/32

Proof Techniques

... when we say: “Proof by Contradiction”

I A proof technique in which we assume the opposite (negation) of the
premise to be proved and then arrive at a contradiction of some other
assumption

I If we are trying to prove premise P , we assume for sake of contradiction
¬P and conclude something we know is false

I If we argue ¬P) false, then ¬P must be false and P must be true

I E.g., to prove there is no greatest even integer:
I Assume for sake of contradiction there exists a greatest even integer N
) 8 even integers n, we have N � n (1)
I But M = N + 2 is an even integer since it’s the sum of two even integers,

and M > N
I Therefore, our conclusion (1) is false, so our negated premise is false, so

our original premise is true

29/32

Proof Techniques

... when we say: “Proof by Induction”

I A proof technique (typically applied to situations involving non-negative
integers) in which we prove a base case followed by the inductive step

I E.g., prove Sn =
Pn

i=1

i = n(n + 1)/2
I Base case (n = 1): S

1

= 1 = n(n + 1)/2
I Inductive step: Assume holds for n and prove it holds for n + 1:

Sn+1

= Sn + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2n + 2

2

=
n2 + 3n + 2

2
=

(n + 1)(n + 2)

2

I Useful for proving invariants in algorithms, where some property always
holds at every step, and therefore at the final step

30/32

Proof Techniques

... when we say: “Proof by Construction”

I A proof technique often used to prove existence of something by
directly constructing it

I E.g., prove that if a < b then there exists a real number c such that
a < c < b

I Set c = (a+ b)/2 (always exists in R)
I Since c � a = (a+ b � 2a)/2 = (b � a)/2 > 0 and

b � c = (2b � a� b)/2 = (b � a)/2 > 0, we have constructed a c such
that a < c < b

I We will use this extensively when we study NP-completeness

31/32

Proof Techniques

... when we say: “Proof by Contrapositive”

I Recall that P) Q is logically equivalent to ¬Q) ¬P via
contraposition (compare truth tables to convince yourself)

I E.g., prove that if x2 is even, then x is even
I Contrapositive says: If x is not even, then x2 is not even
I This is easily shown true since x is odd, and the product of two odd

numbers is odd
I Since contrapositive is true, original premise is true

I Very helpful when proving P , Q (“P if and only if Q”) since we could
prove:

I P) Q and ¬P) ¬Q OR
I P) Q and Q) P (often simpler)

I We will use this extensively when we study NP-completeness

32/32

Conclusion

I This was a deliberately brief overview of concepts you should already
know

I We expect you to understand it well during lectures, homeworks, and
exams

I It is all covered in depth in the textbook and other resources!

