Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 08 — Lower Bounds (Sections 8.1 and 33.3)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Remember when ...

... I said: "Upper Bound of an Algorithm"

- An algorithm A has an upper bound of f(n) for input of size n if there exists no input of size n such that A requires more than f(n) time
- ► E.g., we know from prior courses that Quicksort and Bubblesort take no more time than O(n²), while Mergesort has an upper bound of O(n log n)

... I said: "Upper Bound of a Problem"

- ► A problem has an upper bound of f(n) if there exists at least one algorithm that has an upper bound of f(n)
 - ▶ I.e., there exists an algorithm with time/space complexity of at most *f*(*n*) on **all** inputs of size *n*
- E.g., since algorithm Mergesort has worst-case time complexity of O(n log n), the problem of sorting has an upper bound of O(n log n)

Remember when ...

... I said: "Lower Bound of a Problem"

- ► A problem has a lower bound of f(n) if, for any algorithm A to solve the problem, there exists at least one input of size n that forces A to take at least f(n) time/space
- ▶ This pathological input depends on the specific algorithm A
- E.g., reverse order forces Bubblesort to take $\Omega(n^2)$ steps
- Since every sorting algorithm has an input of size *n* forcing Ω(*n* log *n*) steps, sorting problem has time complexity lower bound of Ω(*n* log *n*)
- To argue a lower bound for a problem, can use an adversarial argument: An algorithm that simulates arbitrary algorithm A to build a pathological input
 - Needs to be in some general (algorithmic) form since the nature of the
 - pathological input depends on the specific algorithm A
 - Adversary has unlimited computing resources
- Can also **reduce** one problem to another to establish lower bounds

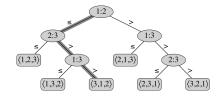
Comparison-Based Sorting Algorithms

- Our lower bound applies only to comparison-based sorting algorithms
 The sorted order it determines is based only on comparisons between the input elements
 - E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort
- What is not a comparison-based sorting algorithm?
 - > The sorted order it determines is based on additional information, e.g.,
 - bounds on the range of input values
 - E.g., Counting Sort, Radix Sort

Decision Trees

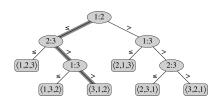
- ➤ A decision tree is a full binary tree that represents comparisions between elements performed by a particular sorting algorithm operating on a certain-sized input (*n* elements)
- ▶ Key point: a tree represents an algorithm's behavior on all possible inputs of size n
 - Thus, an adversarial argument could use such a tree to choose a pathological input
- Each internal node represents one comparison made by algorithm
 - Each node labeled as i : j, which represents comparison $A[i] \le A[j]$
 - If, in the particular input, it is the case that A[i] ≤ A[j], then control flow moves to left child, otherwise to the right child
 Each leaf represents a possible output of the algorithm, which is a
 - permutation of the input
 - All permutations must be in the tree in order for algorithm to work properly

Example for Insertion Sort



- If n = 3, Insertion Sort first compares A[1] to A[2]
- If $A[1] \leq A[2]$, then compare A[2] to A[3]
- ▶ If *A*[2] > *A*[3], then compare *A*[1] to *A*[3]
- If $A[1] \leq A[3]$, then sorted order is A[1], A[3], A[2]

Example for Insertion Sort (2)



- ▶ Example: *A* = [7, 8, 4]
- First compare 7 to 8, then 8 to 4, then 7 to 4
- Output permutation is (3, 1, 2), which implies sorted order is 4, 7, 8
- ► What are worst-case inputs for this algorithm? What are not?

Proof of Lower Bound

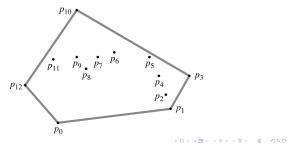
- Length of path from root to output leaf is number of comparisons made by algorithm on that input
- ▶ Worst-case number of comparisons = length of longest path = height h
- \Rightarrow Adversary chooses a deepest leaf to create worst-case input
- ▶ Number of leaves in tree is *n*! = number of outputs (permutations)
- A binary tree of height h has at most 2^h leaves
- Thus we have $2^h \ge n! \ge \sqrt{2\pi n} \left(\frac{n}{2}\right)^n$

$$h \ge \lg \sqrt{2\pi} + (1/2) \lg n + n \lg n - n \lg e = \Omega(n \log n)$$

- ⇒ Every comparison-based sorting algorithm has some input that forces it to make $\Omega(n \log n)$ comparisons
- \Rightarrow Mergesort and Heapsort are *asymptotically optimal*

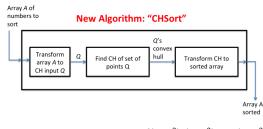
Another Lower Bound: Convex Hull

- Can use the lower bound on sorting to get a lower bound on the convex hull problem:
 - Given a set $Q \in \{p_1, p_2, \ldots, p_n\}$ of *n* points, each from \mathbb{R}^2 , output CH(Q), which is the smallest convex polygon *P* such that each point from *Q* is on *P*'s boundary or in its interior



Another Lower Bound: Convex Hull (2)

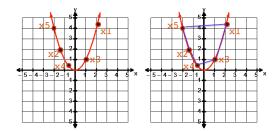
- We will **reduce** the problem of sorting to that of finding a convex hull
- ▶ I.e., given any instance of the sorting problem $A = \{x_1, ..., x_n\}$, we will transform it to an instance of convex hull such that the time complexity of the new algorithm sorting will be no more than that of convex hull



► The reduction: transform A to $Q = \{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2)\}$ ⇒ Takes O(n) time

Another Lower Bound: Convex Hull (3)

E.g., $A = \{2.1, -1.4, 1.0, -0.7, -2.0\}$



- Since the points in Q are on a parabola, all points of Q are on CH(Q)
- How can we get a sorted version of A from this?

Another Lower Bound: Convex Hull (4)

- CHSort yields a sorted list of points from (any) A
- ► Time complexity of CHSort: time to transform *A* to *Q* + time to find CH of *Q* + time to read sorted list from CH
- $\Rightarrow O(n)$ + time to find CH + O(n)
- ► If time for convex hull is $o(n \log n)$, then sorting is $o(n \log n)$ ⇒ Since that cannot happen, we know that convex hull is $\Omega(n \log n)$