Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 06 — Dynamic Programming (Chapter 15)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

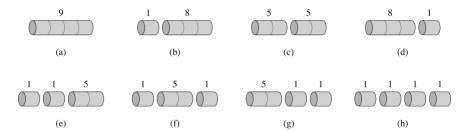
- Dynamic programming is a technique for solving optimization problems
- ► Key element: Decompose a problem into **subproblems**, solve them recursively, and then combine the solutions into a final (optimal) solution
- ▶ Important component: There are typically an exponential number of subproblems to solve, but many of them overlap
 - ⇒ Can re-use the solutions rather than re-solving them
- Number of distinct subproblems is polynomial

Rod Cutting (1)

- ► A company has a rod of length *n* and wants to cut it into smaller rods to maximize profit
- ▶ Have a table telling how much they get for rods of various lengths: A rod of length i has price p_i
- ► The cuts themselves are free, so profit is based solely on the prices charged for of the rods
- ▶ If cuts only occur at integral boundaries 1, 2, ..., n-1, then can make or not make a cut at each of n-1 positions, so total number of possible solutions is 2^{n-1}

Rod Cutting (2)

i	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	30



Rod Cutting (3)

- ▶ Given a rod of length n, want to find a set of cuts into lengths i_1, \ldots, i_k (where $i_1 + \cdots + i_k = n$) and **revenue** $r_n = p_{i_1} + \cdots + p_{i_k}$ is maximized
- For a specific value of n, can either make no cuts (revenue $= p_n$) or make a cut at some position i, then optimally solve the problem for lengths i and n i:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_i + r_{n-i}, \dots, r_{n-1} + r_1)$$

- Notice that this problem has the optimal substructure property, in that an optimal solution is made up of optimal solutions to subproblems
 - ► Can find optimal solution if we consider all possible subproblems
- ▶ Alternative formulation: Don't further cut the first segment:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Cut-Rod(p, n)

```
1 if n == 0 then

2 | return 0

3 q = -\infty

4 for i = 1 to n do

5 | q = \max(q, p[i] + \text{Cut-Rod}(p, n - i))

6 end

7 return q
```

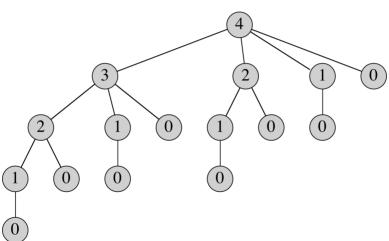
Time Complexity

- ▶ Let T(n) be number of calls to CUT-ROD
- ▶ Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

- ▶ Why exponential? Cut-Rod exploits the optimal substructure property, but repeats work on these subproblems
- ▶ E.g., if the first call is for n = 4, then there will be:
 - ▶ 1 call to Cut-Rod(4)
 - ▶ 1 call to Cut-Rod(3)
 - ▶ 2 calls to CUT-ROD(2)
 - ▶ 4 calls to CUT-ROD(1)
 - ▶ 8 calls to CUT-ROD(0)

Time Complexity (2)



Dynamic Programming Algorithm

- Can save time dramatically by remembering results from prior calls
- Two general approaches:
 - Top-down with memoization: Run the recursive algorithm as defined earlier, but before recursive call, check to see if the calculation has already been done and memoized
 - 2. **Bottom-up**: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones
- Typically have the same asymptotic running time

Memoized-Cut-Rod-Aux(p, n, r)

```
1 if r[n] > 0 then
2 return r[n]
                            // r initialized to all -\infty
 3 if n == 0 then
       q = 0
 5 else
       q=-\infty
      for i = 1 to n do
            a =
           \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n-i, r))
       end
9
       r[n] = q
11 return q
```

Bottom-Up-Cut-Rod(p, n)

```
1 Allocate r[0 \dots n]
r[0] = 0
3 for i = 1 to n do
     q=-\infty
  for i = 1 to j do
    end
    r[j] = q
9 end
10 return r[n]
```

First solves for n = 0, then for n = 1 in terms of r[0], then for n = 2 in terms of r[0] and r[1], etc.

Example

									9	
pi	1	5	8	9	10	17	17	20	24	30

$$j = 1$$

$$i = 1$$

$$j = 2$$

$$i = 1$$

$$j = 2$$

$$i = 1$$

$$j = 4$$

$$i = 1$$

$$j = 2$$

$$i = 1$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

$$i = 2$$

$$j = 3$$

$$i = 1$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

$$i = 3$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

$$i = 3$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

$$i = 3$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

$$i = 3$$

$$j = 4$$

$$i = 2$$

$$j = 3$$

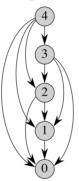
$$i = 3$$

$$j = 4$$

$$j =$$

Time Complexity

Subproblem graph for n = 4



Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$

Reconstructing a Solution

- ▶ If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem
- ▶ Will add a second array *s*, which keeps track of the optimal size of the first piece cut in each subproblem

Extended-Bottom-Up-Cut-Rod(p, n)

```
1 Allocate r[0 \dots n] and s[0 \dots n]
r[0] = 0
3 for j = 1 to n do
        a=-\infty
      for i = 1 to i do
           if q < p[i] + r[j-i] then
             q = p[i] + r[j - i]
s[j] = i
9
        end
10
        r[j] = q
11
12 end
13 return r, s
```

Print-Cut-Rod-Solution(p, n)

```
1 (r,s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p,n)

2 while n > 0 do

3 | print s[n]

4 | n = n - s[n]

5 end
```

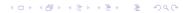
Example:

i											
r[i]											
s[i]	0	1	2	3	2	2	6	1	2	3	10

If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments of sizes 1 and 6

Matrix-Chain Multiplication (1)

- ▶ Given a chain of matrices $\langle A_1, \dots, A_n \rangle$, goal is to compute their product $A_1 \cdots A_n$
- ► This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- Can cause dramatic changes in number of operations required
- ▶ Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires pqr steps and yields a $p \times r$ matrix for future multiplications
- ▶ E.g., Let A_1 be 10×100 , A_2 be 100×5 , and A_3 be 5×50
 - 1. Computing $((A_1A_2)A_3)$ requires $10 \cdot 100 \cdot 5 = 5000$ steps to compute (A_1A_2) (yielding a 10×5), and then $10 \cdot 5 \cdot 50 = 2500$ steps to finish, for a total of 7500
 - 2. Computing $(A_1(A_2A_3))$ requires $100 \cdot 5 \cdot 50 = 25000$ steps to compute (A_2A_3) (yielding a 100×50), and then $10 \cdot 100 \cdot 50 = 50000$ steps to finish, for a total of 75000



Matrix-Chain Multiplication (2)

- ▶ The matrix-chain multiplication problem is to take a chain $\langle A_1, \ldots, A_n \rangle$ of n matrices, where matrix i has dimension $p_{i-1} \times p_i$, and fully parenthesize the product $A_1 \cdots A_n$ so that the number of scalar multiplications is minimized
- ▶ Brute force solution is infeasible, since its time complexity is $\Omega\left(4^n/n^{3/2}\right)$
- ▶ Will follow 4-step procedure for dynamic programming:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution
 - 4. Construct an optimal solution from computed information

Characterizing the Structure of an Optimal Solution

- ▶ Let $A_{i...j}$ be the matrix from the product $A_iA_{i+1}\cdots A_j$
- ▶ To compute $A_{i...j}$, must split the product and compute $A_{i...k}$ and $A_{k+1...j}$ for some integer k, then multiply the two together
- Cost is the cost of computing each subproduct plus cost of multiplying the two results
- Say that in an optimal parenthesization, the optimal split for $A_iA_{i+1}\cdots A_j$ is at k
- ▶ Then in an optimal solution for $A_iA_{i+1}\cdots A_j$, the parenthisization of $A_i\cdots A_k$ is itself optimal for the subchain $A_i\cdots A_k$ (if not, then we could do better for the larger chain)
- ▶ Similar argument for $A_{k+1} \cdots A_j$
- ► Thus if we make the right choice for *k* and then optimally solve the subproblems recursively, we'll end up with an optimal solution
- ► Since we don't know optimal k, we'll try them all

Recursively Defining the Value of an Optimal Solution

- ▶ Define m[i,j] as minimum number of scalar multiplications needed to compute $A_{i...j}$
- ▶ (What entry in the *m* table will be our final answer?)
- ▶ Computing m[i, j]:
 - 1. If i = j, then no operations needed and m[i, i] = 0 for all i
 - 2. If i < j and we split at k, then optimal number of operations needed is the optimal number for computing $A_{i...k}$ and $A_{k+1...j}$, plus the number to multiply them:

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

3. Since we don't know k, we'll try all possible values:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

▶ To track the optimal solution itself, define s[i,j] to be the value of k used at each split

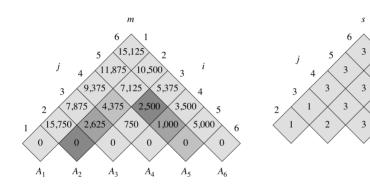
Computing the Value of an Optimal Solution

- ► As with the rod cutting problem, many of the subproblems we've defined will overlap
- Exploiting overlap allows us to solve only $\Theta(n^2)$ problems (one problem for each (i,j) pair), as opposed to exponential
- ▶ We'll do a bottom-up implementation, based on chain length
- ▶ Chains of length 1 are trivially solved (m[i, i] = 0 for all i)
- ▶ Then solve chains of length 2, 3, etc., up to length n
- Linear time to solve each problem, quadratic number of problems, yields $O(n^3)$ total time

Matrix-Chain-Order(p, n)

```
1 allocate m[1 \dots n, 1 \dots n] and s[1 \dots n, 1 \dots n]
2 initialize m[i, i] = 0 \ \forall 1 < i < n
 3 for \ell = 2 to n do
        for i = 1 to n - \ell + 1 do
            i = i + \ell - 1
            m[i,j] = \infty
            for k = i to j - 1 do
                 q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
                 if q < m[i,j] then
                     m[i,j]=q
10
                    s[i,j]=k
11
12
             end
13
        end
14
15 end
16 return (m, s)
```

Example



matrix	A_1	A_2	A ₃	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

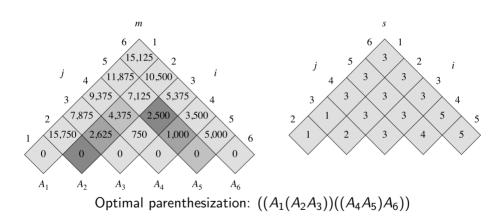
Constructing an Optimal Solution from Computed Information

- ▶ Cost of optimal parenthesization is stored in m[1, n]
- First split in optimal parenthesization is between s[1, n] and s[1, n] + 1
- ▶ Descending recursively, next splits are between s[1, s[1, n]] and s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and s[s[1, n] + 1, n] + 1 for right side
- ▶ and so on...

Print-Optimal-Parens(s, i, j)

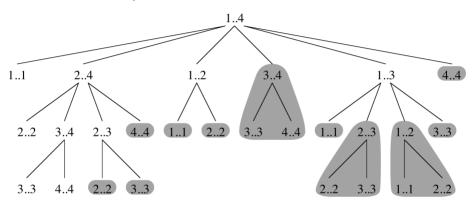
```
1 if i == j then
2 | print "A";
3 else
4 | print "("
5 | PRINT-OPTIMAL-PARENS(s, i, s[i, j])
6 | PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
7 | print ")"
```

Example



Example of How Subproblems Overlap

Entire subtrees overlap:



See Section 15.3 for more on optimal substructure and overlapping subproblems

Longest Common Subsequence

- Sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a **subsequence** of another sequence $X = \langle x_1, x_2, \dots, x_m \rangle$ if there is a strictly increasing sequence $\langle i_1, \dots, i_k \rangle$ of indices of X such that for all $j = 1, \dots, k$, $x_{i_j} = z_j$
- ▶ I.e., as one reads through Z, one can find a match to each symbol of Z in X, in order (though not necessarily contiguous)
- ▶ E.g., $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ since $z_1 = x_2$, $z_2 = x_3$, $z_3 = x_5$, and $z_4 = x_7$
- ▶ *Z* is a **common subsequence** of *X* and *Y* if it is a subsequence of both
- ▶ The goal of the **longest common subsequence problem** is to find a maximum-length common subsequence (LCS) of sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$

Characterizing the Structure of an Optimal Solution

- ▶ Given sequence $X = \langle x_1, \dots, x_m \rangle$, the *i*th **prefix** of X is $X_i = \langle x_1, \dots, x_i \rangle$
- ▶ Theorem If $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$ have LCS $Z = \langle z_1, \dots, z_k \rangle$, then
 - 1. $x_m = y_n \Rightarrow z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1} and Y_{n-1}
 - ▶ If $z_k \neq x_m$, can lengthen Z, \Rightarrow contradiction
 - ▶ If Z_{k-1} not LCS of X_{m-1} and Y_{n-1} , then a longer CS of X_{m-1} and Y_{n-1} could have x_m appended to it to get CS of X and Y that is longer than Z, \Rightarrow contradiction
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - ▶ If $z_k \neq x_m$, then Z is a CS of X_{m-1} and Y. Any CS of X_{m-1} and Y that is longer than Z would also be a longer CS for X and Y, \Rightarrow contradiction
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}
 - ► Similar argument to (2)

Recursively Defining the Value of an Optimal Solution

- ▶ The theorem implies the kinds of subproblems that we'll investigate to find LCS of $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$
- ▶ If $x_m = y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m (= y_n) to it
- ▶ If $x_m \neq y_n$, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one
- ▶ Let $c[i,j] = \text{length of LCS of } X_i \text{ and } Y_j$

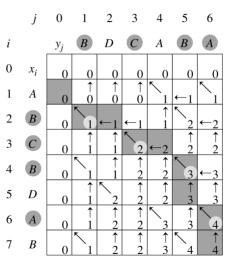
$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

LCS-Length(X, Y, m, n)

```
1 allocate b[1 \dots m, 1 \dots n] and c[0 \dots m, 0 \dots n]
 2 initialize c[i, 0] = 0 and c[0, i] = 0 \ \forall 0 < i < m and 0 < i < n
3 for i = 1 to m do
         for j = 1 to n do
              if x_i == y_i then
                   c[i,j] = c[i-1,j-1] + 1
                   b[i,i] = " \nwarrow "
              else if c[i-1,j] \ge c[i,j-1] then
                   c[i,j] = c[i-1,j]
                   b[i,j] = "\uparrow"
10
              else
11
                  c[i,j] = c[i,j-1]
b[i,j] = "\leftarrow"
12
13
14
15
         end
16 end
17 return (c, b)
```

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
, $Y = \langle B, D, C, A, B, A \rangle$



Constructing an Optimal Solution from Computed Information

- ▶ Length of LCS is stored in c[m, n]
- ▶ To print LCS, start at b[m, n] and follow arrows until in row or column 0
- ▶ If in cell (i,j) on this path, when $x_i = y_j$ (i.e., when arrow is " \nwarrow "), print x_i as part of the LCS
- ► This will print LCS backwards

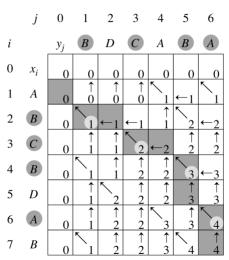
Print-LCS(b, X, i, j)

```
1 if i == 0 or i == 0 then
     return
b[i,j] = "\sqrt{" then
  PRINT-LCS(b, X, i-1, j-1)
    print x_i
6 else if b[i,j] == "\uparrow" then
  PRINT-LCS(b, X, i - 1, j)
8 else Print-LCS(b, X, i, j - 1)
```

What is the time complexity?

Example

 $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$, prints "BCBA"



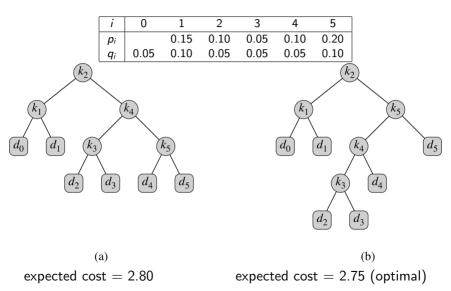
Optimal Binary Search Trees

- ▶ Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time
- ▶ Given a sequence $K = \langle k_1, \dots, k_n \rangle$ of n distinct keys in sorted order
- \triangleright Key k_i has probability p_i that it will be sought on a particular search
- ▶ To handle searches for values not in K, have n + 1 dummy keys d_0, d_1, \ldots, d_n to serve as the tree's leaves
- ▶ Dummy key d_i will be reached with probability q_i
- ▶ If depth_T(k_i) is distance from root of k_i in tree T, then expected search cost of T is

$$1 + \sum_{i=1}^n p_i \operatorname{\mathsf{depth}}_{\mathcal{T}}(k_i) + \sum_{i=0}^n q_i \operatorname{\mathsf{depth}}_{\mathcal{T}}(d_i)$$

► An **optimal binary search tree** is one with minimum expected search cost

Optimal Binary Search Trees (2)



Characterizing the Structure of an Optimal Solution

- ▶ **Observation:** Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i, \ldots, k_j and have leaves d_{i-1}, \ldots, d_j
- ▶ Thus, if an optimal BST T has a subtree T' over keys k_i, \ldots, k_j , then T' is optimal for the subproblem consisting of only the keys k_i, \ldots, k_i
 - ▶ If T' weren't optimal, then a lower-cost subtree could replace T' in T, \Rightarrow contradiction
- ▶ Given keys $k_i, ..., k_j$, say that its optimal BST roots at k_r for some $i \le r \le j$
- ▶ Thus if we make right choice for k_r and optimally solve the problem for k_i, \ldots, k_{r-1} (with dummy keys d_{i-1}, \ldots, d_{r-1}) and the problem for k_{r+1}, \ldots, k_j (with dummy keys d_r, \ldots, d_j), we'll end up with an optimal solution
- ightharpoonup Since we don't know optimal k_r , we'll try them all

Recursively Defining the Value of an Optimal Solution

- ▶ Define e[i,j] as the expected cost of searching an optimal BST built on keys k_i, \ldots, k_j
- ▶ If j = i 1, then there is only the dummy key d_{i-1} , so $e[i, i 1] = q_{i-1}$
- ▶ If $j \ge i$, then choose root k_r from $k_i, ..., k_j$ and optimally solve subproblems $k_i, ..., k_{r-1}$ and $k_{r+1}, ..., k_j$
- ▶ When combining the optimal trees from subproblems and making them children of k_r , we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- ▶ Define $w(i,j) = \sum_{\ell=i}^{j} p_{\ell} + \sum_{\ell=i-1}^{j} q_{\ell}$ as the sum of probabilities of the nodes in the subtree built on k_i, \ldots, k_j , and get

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

Recursively Defining the Value of an Optimal Solution (2)

Note that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

- ► Thus we can condense the equation to e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)
- \triangleright Finally, since we don't know what k_r should be, we try them all:

$$\mathbf{e}[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \leq r \leq j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \leq j \end{array} \right.$$

▶ Will also maintain table root[i,j] = index r for which k_r is root of an optimal BST on keys k_i, \ldots, k_j

Optimal-BST(p, q, n)

```
1 allocate e[1 \dots n+1, 0 \dots n], w[1 \dots n+1, 0 \dots n], and root[1 \dots n, 1 \dots n]
 2 initialize e[i, i-1] = w[i, i-1] = q_{i-1} \ \forall \ 1 < i < n+1
    for \ell = 1 to n do
           for i = 1 to n - \ell + 1 do
                 i = i + \ell - 1
                 e[i,j] = \infty
                 w[i,j] = w[i,j-1] + p_i + q_i
                 for r = i to i do
                        t = e[i, r - 1] + e[r + 1, j] + w[i, j]
10
                        if t < e[i, j] then
11
12
13
14
                  end
15
           end
    return (e, root)
```

What is the time complexity?

Example

	i	0	1	2	3	4	5			
	Pi		0.15	0.10	0.05	0.10	0.20			
	qi	0.05	0.10	0.05	0.05	0.05	0.10			
	\overline{e}						w			
5 A 1										
	2.75						3/100	1		
j 4 🔨	2.75>	_2	i		j 4	1.00	$\searrow 2$	i		
3 \(1.73	5×2.0	00 3		$3 \times 0.70 \times 0.80 \times 3$						
3/1 25/	1 20					3/0.51	-\ \(\) = 0	. / \		
$2 \times 1.25 \times$	(1.20)	(1.30)	.4			2 / 0.53	5×0.50	\times 0.60 \rangle	<u>\</u> 4	
$1 \sqrt{0.90} \sqrt{0.70}$	0×0.6	50 🔀 0.9	1 /	(0.45)	0.35 🔾	0.30 0.:	50 5			
$0.45 \times 0.40 \times$	(0.25)	(0.30)	0.50	6	0 0.30 0.25 0.15 0.20 0.35 6					
$\langle 0.05 \rangle \langle 0.10 \rangle \langle 0.05 \rangle$	0.0	0.0.	5×0.10	>	(0.05)	(0.10)	0.05×0	0.05 \(0.0	0.10	
			/ \ /						/ \/	

